Basal Forebrain Histaminergic Transmission Modulates Electroencephalographic Activity and Emergence from Isoflurane Anesthesia

Author:

Luo Tao1,Leung L Stan2

Affiliation:

1. Postdoctoral Fellow, Department of Physiology and Pharmacology.

2. Professor, Department of Physiology and Pharmacology and Program in Neuroscience, The University of Western Ontario.

Abstract

Background The tuberomammillary histaminergic neurons are involved in the sedative component of anesthetic action. The nucleus basalis magnocellularis (NBM) in the basal forebrain receives dense excitatory innervation from the tuberomammillary nucleus and is recognized as an important site of sleep-wake regulation. This study investigated whether NBM administration of histaminergic drugs may modulate arousal/emergence from isoflurane anesthesia. Methods Microinjections of histaminergic agonists and antagonists were made into the NBM of rats anesthetized with isoflurane. The changes in electroencephalographic activity, including electroencephalographic burst suppression ratio and power spectra, as well as respiratory rate, were recorded under basal conditions and after NBM injection. Time to resumption of righting reflex was recorded as a measure of emergence from anesthesia. Results The rats displayed a burst suppression electroencephalographic pattern at inhaled isoflurane concentrations of 1.4-2.1%. Application of histamine (1 microg/0.5 microl) to the NBM reversed the electroencephalographic depressant effect of isoflurane; i.e., electroencephalographic activity shifted from the burst suppression pattern toward delta activity at 1.4% isoflurane, and the burst suppression ratio decreased at 2.1% isoflurane. Histamine-evoked activation of electroencephalography was blocked by NBM pretreatment with a H1 receptor antagonist, triprolidine (5 microg/1 microl), but not by a H2 receptor antagonist, cimetidine (25 microg/1 microl). The respiratory rate was significantly increased after histamine injection. NBM application of histamine facilitated, while triprolidine delayed, emergence from isoflurane anesthesia. Conclusions Histamine activation of H1 receptors in the NBM induces electroencephalographic arousal and facilitates emergence from isoflurane anesthesia. The basal forebrain histaminergic pathway appears to play a role in modulating arousal/emergence from anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3