Acute Normovolemic Hemodilution in the Pig Is Associated with Renal Tissue Edema, Impaired Renal Microvascular Oxygenation, and Functional Loss

Author:

Konrad Franziska M.1,Mik Egbert G.2,Bodmer Sander I. A.3,Ates N. Bahar4,Willems Henriëtte F. E. M.4,Klingel Karin5,de Geus Hilde R. H.6,Stolker Robert Jan7,Johannes Tanja8

Affiliation:

1. Resident, Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany, and Research Associate, Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

2. Staff Anesthesiologist

3. Research Associate

4. Resident

5. Professor, Department of Molecular Pathology, Institute of Pathology, University Hospital Tübingen.

6. Staff Intensivist, Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam.

7. Professor and Chair

8. Staff Anesthesiologist, Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC, University Medical Center Rotterdam.

Abstract

Abstract Background: The authors investigated the impact of acute normovolemic hemodilution (ANH) on intrarenal oxygenation and its functional short-term consequences in pigs. Methods: Renal microvascular oxygenation (µPo2) was measured in cortex, outer and inner medulla via three implanted optical fibers by oxygen-dependent quenching of phosphorescence. Besides systemic hemodynamics, renal function, histopathology, and hypoxia-inducible factor-1α expression were determined. ANH was performed in n = 18 pigs with either colloids (hydroxyethyl starch 6% 130/0.4) or crystalloids (full electrolyte solution), in three steps from a hematocrit of 30% at baseline to a hematocrit of 15% (H3). Results: ANH with crystalloids decreased µPo2 in cortex and outer medulla approximately by 65% (P < 0.05) and in inner medulla by 30% (P < 0.05) from baseline to H3. In contrast, µPo2 remained unaltered during ANH with colloids. Furthermore, renal function decreased by approximately 45% from baseline to H3 (P < 0.05) only in the crystalloid group. Three times more volume of crystalloids was administered compared with the colloid group. Alterations in systemic and renal regional hemodynamics, oxygen delivery and oxygen consumption during ANH, gave no obvious explanation for the deterioration of µPo2 in the crystalloid group. However, ANH with crystalloids was associated with the highest formation of renal tissue edema and the highest expression of hypoxia-inducible factor-1α, which was mainly localized in distal convoluted tubules. Conclusions: ANH to a hematocrit of 15% statistically significantly impaired µPo2 and renal function in the crystalloid group. Less tissue edema formation and an unimpaired renal µPo2 in the colloid group might account for a preserved renal function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3