Low-tidal-volume Mechanical Ventilation Induces a Toll-like Receptor 4–dependent Inflammatory Response in Healthy Mice

Author:

Vaneker Michiel1,Joosten Leo A.1,Heunks Leo M. A.1,Snijdelaar Dirk G.1,Halbertsma Feico J.1,van Egmond Jan1,Netea Mihai G.1,van der Hoeven Johannes G.1,Scheffer Gert Jan1

Affiliation:

1. * Staff Anesthesiologist, ∥ Clinical Physicist, †† Professor and Chairman, Department of Anesthesiology, ‡ Staff, ** Professor and Chairman, Department of Intensive Care, † Staff, Departments of Rheumatology and Internal Medicine,# Staff, Department of Internal Medicine and Nijmegen University Centre for Infectious Diseases, Radboud University Nijmegen Medical Centre. § Pediatric Intensivist, Dep

Abstract

Background Mechanical ventilation (MV) can induce ventilator-induced lung injury. A role for proinflammatory pathways has been proposed. The current studies analyzed the roles of Toll-like receptor (TLR) 4 and TLR2 involvement in the inflammatory response after MV in the healthy lung. Methods Wild-type (WT) C57BL6, TLR4 knockout (KO), and TLR2 KO mice were mechanically ventilated for 4 h. Bronchoalveolar lavage fluid was analyzed for presence of endogenous ligands. Lung homogenates were used to investigate changes in TLR4 and TLR2 expression. Cytokines were measured in lung homogenate and plasma, and leukocytes were counted in lung tissue. Results MV significantly increased endogenous ligands for TLR4 in bronchoalveolar lavage fluid and relative messenger RNA expression of TLR4 and TLR2 in lung tissue. In lung homogenates, MV in WT mice increased levels of keratinocyte-derived chemokine, interleukin (IL)-1alpha, and IL-1beta. In TLR4 KO mice, MV increased IL-1alpha but not IL-1beta, and the increase in keratinocyte-derived chemokine was less pronounced. In plasma, MV in WT mice increased levels of IL-6, keratinocyte-derived chemokine, and tumor necrosis factor alpha. In TLR4 KO mice, MV did not increase levels of IL-6 or tumor necrosis factor alpha, and the response of keratinocyte-derived chemokine was less pronounced. MV in TLR2 KO mice did not result in different cytokine levels compared with WT mice. In WT and TLR2 KO mice, but not in TLR4 KO mice, MV increased the number of pulmonary leukocytes. Conclusions The current study supports a role for TLR4 in the inflammatory reaction after short-term MV in healthy lungs. Increasing the understanding of the innate immune response to MV may lead to future treatment advances in ventilator-induced lung injury, in which TLR4 may serve as a therapeutic target.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3