Deep learning for automatic prediction of early activation of treatment naïve non-exudative MNVs in AMD

Author:

Crincoli Emanuele12ORCID,Catania Fiammetta3,Sacconi Riccardo4,Ribarich Nicolò4,Ferrara Silvia5,Parravano Mariacristina6,Costanzo Eliana6,Querques Giuseppe4ORCID

Affiliation:

1. Ophthalmology Unit, “Fondazione Policlinico Universitario A. Gemelli IRCCS”, Rome, Italy

2. Catholic University of “Sacro Cuore”, Rome, Italy

3. Departement of Ophthalmology, Hopital Fondation Adolphe De Rothschild, 29 Rue Manin, 75019 Paris, France

4. Department of Ophthalmology University Vita-Salute IRCCS San Raffaele Scientific Institute, Via Olgettina, 60 20132 Milan, Italy

5. Ophthalmology Department, Sant'Eugenio Hospital, 00144 Rome, Italy.

6. IRCCS-Fondazione Bietti, Rome, Via Livenza, 3, 00198, Rome, Italy.

Abstract

Background: Around 30% of non-exudative macular neovascularizations(NE-MNVs) exudate within 2 years from diagnosis in patients with age-related macular degeneration(AMD).The aim of the study is to develop a deep learning classifier based on optical coherence tomography(OCT) and OCT angiography(OCTA) to identify NE-MNVs at risk of exudation. Methods: AMD patients showing OCTA and fluorescein angiography (FA) documented NE-MNV with a 2-years minimum imaging follow-up were retrospectively selected. Patients showing OCT B-scan-documented MNV exudation within the first 2 years formed the EX-GROUP while the others formed QU-GROUP.ResNet-101, Inception-ResNet-v2 and DenseNet-201 were independently trained on OCTA and OCT B-scan images. Combinations of the 6 models were evaluated with major and soft voting techniques. Results: Eighty-nine (89) eyes of 89 patients with a follow-up of 5.7 ± 1.5 years were recruited(35 EX GROUP and 54 QU GROUP). Inception-ResNet-v2 was the best performing among the 3 single convolutional neural networks(CNNs).The major voting model resulting from the association of the 3 different CNNs resulted in improvement of performance both for OCTA and OCT B-scan (both significantly higher than human graders’ performance). Soft voting model resulting from the combination of OCTA and OCT B-scan based major voting models showed a testing accuracy of 94.4%. Peripheral arcades and large vessels on OCTA enface imaging were more prevalent in QU GROUP. Conclusions: Artificial intelligence shows high performances in identifications of NE-MNVs at risk for exudation within the first 2 years of follow up, allowing better customization of follow up timing and avoiding treatment delay. Better results are obtained with the combination of OCTA and OCT B-scan image analysis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3