Sodium Nitrite Mitigates Ventilator-induced Lung Injury in Rats

Author:

Pickerodt Philipp A.1,Emery Michael J.2,Zarndt Rachel3,Martin William4,Francis Roland C. E.5,Boemke Willehad6,Swenson Erik R.7

Affiliation:

1. Research Fellow and Staff Anesthesiologist, Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité–Universitätsmedizin, Berlin, Germany, and Research Fellow, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington.

2. Research Fellow.

3. Research Scientist, Pulmonary and Critical Care Medicine Section, Veterans Affairs Puget Sound Health Care System, Seattle, Washington.

4. Resident in Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington.

5. Senior Staff Anesthesiologist.

6. Senior Staff Anesthesiologist and Professor of Anesthesia, Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité–Universitätsmedizin.

7. Professor of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, and Pulmonary and Critical Care Medicine Section, Veterans Affairs Puget Sound Health Care System.

Abstract

Background Nitrite (NO2) is a physiologic source of nitric oxide and protects against ischemia-reperfusion injuries. We hypothesized that nitrite would be protective in a rat model of ventilator-induced lung injury and sought to determine if nitrite protection is mediated by enzymic catalytic reduction to nitric oxide. Methods Rats were anesthetized and mechanically ventilated. Group 1 had low tidal volume ventilation (LVT) (6 ml/kg and 2 cm H2O positive end-expiratory pressure; n=10); group 2 had high tidal volume ventilation (HVT) (2 h of 35 cm H2O inspiratory peak pressure and 0 cm H2O positive end-expiratory pressure; n=14); groups 3-5: HVT with sodium nitrite (NaNO2) pretreatment (0.25, 2.5, 25 μmol/kg IV; n=6-8); group 6: HVT+NaNO2+nitric oxide scavenger 2-(4-carboxyphenyl)-4,5dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3oxide(n=6); group 7: HVT+NaNO2+nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (n=7); and group 8: HVT+NaNO2+xanthine oxidoreductase inhibitor allopurinol (n=6). Injury assessment included physiologic measurements (gas exchange, lung compliance, lung edema formation, vascular perfusion pressures) with histologic and biochemical correlates of lung injury and protection. Results Injurious ventilation caused statistically significant injury in untreated animals. NaNO2 pretreatment mitigated the gas exchange deterioration, lung edema formation, and histologic injury with maximal protection at 2.5 μmol/kg. Decreasing nitric oxide bioavailability by nitric oxide scavenging, nitric oxide synthase inhibition, or xanthine oxidoreductase inhibition abolished the protection by NaNO2. Conclusions Nitrite confers protection against ventilator-induced lung injury in rats. Catalytic reduction to nitric oxide and mitigation of ventilator-induced lung injury is dependent on both xanthine oxidoreductase and nitric oxide synthases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference50 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3