Analysis of Dynamic Intratidal Compliance in a Lung Collapse Model

Author:

Schumann Stefan1,Vimlati László2,Kawati Rafael3,Guttmann Josef4,Lichtwarck-Aschoff Michael5

Affiliation:

1. Engineer, Division for Experimental Anesthesiology, Department of Anesthesiology, University Medical Center Freiburg, Germany.

2. Staff Anesthesiologist, Department of Surgical Sciences/Section of Anesthesiology and Critical Care Medicine, Uppsala University, Sweden.

3. Assistant Professor, Department of Surgical Sciences/Section of Anesthesiology and Critical Care Medicine, Uppsala University.

4. Professor, Division for Experimental Anesthesiology, Department of Anesthesiology, University Medical Center Freiburg.

5. Professor, Department of Surgical Sciences/Section of Anesthesiology and Critical Care Medicine, Uppsala University.

Abstract

Background For mechanical ventilation to be lung-protective, an accepted suggestion is to place the tidal volume (V(T)) between the lower and upper inflection point of the airway pressure-volume relation. The drawback of this approach is, however, that the pressure-volume relation is assessed under quasistatic, no-flow conditions, which the lungs never experience during ventilation. Intratidal nonlinearity must be assessed under real (i.e., dynamic) conditions. With the dynamic gliding-SLICE technique that generates a high-resolution description of intratidal mechanics, the current study analyzed the profile of the compliance of the respiratory system (C(RS)). Methods In 12 anesthetized piglets with lung collapse, the pressure-volume relation was acquired at different levels of positive end-expiratory pressure (PEEP: 0, 5, 10, and 15 cm H(2)O). Lung collapse was assessed by computed tomography and the intratidal course of C(RS) using the gliding-SLICE method. Results Depending on PEEP, C(RS) showed characteristic profiles. With low PEEP, C(RS) increased up to 20% above the compliance at early inspiration, suggesting intratidal recruitment; whereas a profile of decreasing C(RS), signaling overdistension, occurred with V(T) > 5 ml/kg and high PEEP levels. At the highest volume range, C(RS) was up to 60% less than the maximum. With PEEP 10 cm H(2)O, C(RS) was high and did not decrease before 5 ml/kg V(T) was delivered. Conclusions The profile of dynamic C(RS) reflects nonlinear intratidal mechanics of the respiratory system. The SLICE analysis has the potential to detect intratidal recruitment and overdistension. This might help in finding a combination of PEEP and V(T) level that is protective from a lung-mechanics perspective.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3