Pharmacokinetic–Pharmacodynamic Model for the Reversal of Meeting Abstracts by Sugammadex

Author:

Ploeger Bart A.1,Smeets Jean2,Strougo Ashley2,Drenth Henk-Jan3,Ruigt Ge4,Houwing Natalie5,Danhof Meindert6

Affiliation:

1. Chief Scientific Officer, LAP&P Consultants BV, Leiden, The Netherlands, and Assistant Professor, Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands.

2. Pharmacometrician.

3. Chief Executive Officer, LAP&P Consultants BV.

4. Director Clinical Research Neuroscience, N.V. Organon, a part of Schering-Plough Corporation, Oss, The Netherlands.

5. Development Scientist, Pharmerit BV, Rotterdam, The Netherlands.

6. Professor of Pharmacology, Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University.

Abstract

Background Sugammadex selectively binds steroidal neuromuscular blocking drugs, leading to reversal of neuromuscular blockade. The authors developed a pharmacokinetic-pharmacodynamic model for reversal of neuromuscular blockade by sugammadex, assuming that reversal results from a decrease of free drug in plasma and/or neuromuscular junction. The model was applied for predicting the interaction between sugammadex and rocuronium or vecuronium. Methods Noninstantaneous equilibrium of rocuronium-sugammadex complex formation was assumed in the pharmacokinetic-pharmacodynamic interaction model. The pharmacokinetic parameters for the complex and sugammadex alone were assumed to be identical. After development of a pharmacokinetic-pharmacodynamic model for rocuronium alone, the interaction model was optimized using rocuronium and sugammadex concentration data after administration of 0.1-8 mg/kg sugammadex 3 min after administration of 0.6 mg/kg rocuronium. Subsequently, the predicted reversal of neuromuscular blockade by sugammadex was compared with data after administration of up to 8 mg/kg sugammadex at reappearance of second twitch of the train-of-four; or 3, 5, or 15 min after administration of 0.6 mg/kg rocuronium. Finally, the model was applied to predict reversal of vecuronium-induced neuromuscular blockade. Results Using the in vitro dissociation constants for the binding of rocuronium and vecuronium to sugammadex, the pharmacokinetic-pharmacodynamic interaction model adequately predicted the increase in total rocuronium and vecuronium plasma concentrations and the time-course of reversal of neuromuscular blockade. Conclusions Model-based evaluation supports the hypothesis that reversal of rocuronium- and vecuronium-induced neuromuscular blockade by sugammadex results from a decrease in the free rocuronium and vecuronium concentration in plasma and neuromuscular junction. The model is useful for prediction of reversal of rocuronium and vecuronium-induced neuromuscular blockade with sugammadex.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3