Amnestic Concentrations of Sevoflurane Inhibit Synaptic Plasticity of Hippocampal CA1 Neurons through γ-Aminobutyric Acid–mediated Mechanisms

Author:

Ishizeki Junko1,Nishikawa Koichi2,Kubo Kazuhiro3,Saito Shigeru4,Goto Fumio5

Affiliation:

1. Assistant Professor.

2. Associate Professor.

3. Research Fellowship for Young Scientists in Japan Society for the Promotion of Science.

4. Professor and Chair.

5. Special Duty Professor.

Abstract

Background The cellular mechanisms of anesthetic-induced amnesia are still poorly understood. The current study examined sevoflurane at various concentrations in the CA1 region of rat hippocampal slices for effects on excitatory synaptic transmission and on long-term potentiation (LTP), as a possible mechanism contributing to anesthetic-induced loss of recall. Methods Population spikes and field excitatory postsynaptic potentials were recorded using extracellular electrodes after electrical stimulation of Schaffer-collateral-commissural fiber inputs. Paired pulse facilitation was used as a measure of presynaptic effects of the anesthetic. LTP was induced using tetanic stimulation (100 Hz, 1 s). Sevoflurane at concentrations from amnestic (0.04 mm) to clinical concentrations (0.23-0.41 mm) were added to the perfusion solution. Results In the presence of 0.04 mm sevoflurane, the amplitude of population spikes was significantly depressed, and tetanic stimulation induced only posttetanic potentiation and then failure of LTP. These inhibitory effects were antagonized by bicuculline (10 microm), a gamma-aminobutyric acid type A receptor antagonist. Sevoflurane at 0.23-0.41 mm further depressed the amplitude of field excitatory postsynaptic potentials in a dose-dependent manner and completely blocked LTP. Bicuculline only partially antagonized 0.41 mm sevoflurane-induced profound inhibition of LTP. Sevoflurane at 0.23-0.41 mm, but not at 0.04 mm, significantly increased paired pulse facilitation, suggesting that sevoflurane has presynaptic actions to reduce glutamate release from nerve terminals. Conclusions The current study provides evidence that amnestic concentrations of sevoflurane inhibit LTP of hippocampal CA1 neurons through gamma-aminobutyric acid-mediated mechanisms, and these actions seem to account for the effects of amnestic sevoflurane on synaptic plasticity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3