Effect of Disrupting N -Methyl-d-aspartate Receptor–Postsynaptic Density Protein-95 Interactions on the Threshold for Halothane Anesthesia in Mice

Author:

Tao Feng1,Johns Roger A.2

Affiliation:

1. Instructor.

2. Professor.

Abstract

Background The authors' previous studies have shown that clinically relevant concentrations of inhalational anesthetics dose-dependently and specifically inhibit the PSD-95, Dlg, and ZO-1 (PDZ) domain-mediated protein interactions between postsynaptic density protein 95 (PSD-95) and N-methyl-d-aspartate receptors, and that the knockdown of spinal PSD-95 by intrathecal injection of PSD-95 antisense oligodeoxynucleotide significantly reduces the minimum alveolar anesthetic concentration for isoflurane in rats. Methods The authors constructed a fusion peptide, Tat-PSD-95 PDZ2, comprising the second PDZ domain of PSD-95, which can specifically disrupt PSD-95 PDZ2-mediated protein interactions by binding to its interaction partner. By intraperitoneal injection of this fusion peptide into mice, the authors investigated the effect of disrupting the PSD-95 PDZ2-mediated protein interactions on the threshold for halothane anesthesia. Results Systemically injected fusion peptide Tat-PSD-95 PDZ2 was delivered into the central nervous system, disrupted the protein-protein interactions between N-methyl-d-aspartate receptor NR2 subunits and PSD-95, and significantly reduced the minimum alveolar anesthetic concentration and righting reflex EC50 for halothane. Conclusions By disrupting PSD-95 PDZ2 domain-mediated protein interactions, intraperitoneal injection of cell-permeant fusion peptide Tat-PSD-95 PDZ2 dose-dependently reduces the threshold for halothane anesthesia. These results suggest that PDZ domain-mediated protein interactions at synapses in the central nervous system might play an important role in the molecular mechanisms of halothane anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3