Neural Mechanisms of Sevoflurane-induced Respiratory Depression in Newborn Rats

Author:

Kuribayashi Junya1,Sakuraba Shigeki2,Kashiwagi Masanori3,Hatori Eiki2,Tsujita Miki2,Hosokawa Yuki2,Takeda Junzo4,Kuwana Shun-ichi5

Affiliation:

1. Instructor, Department of Anesthesiology, Keio University School of Medicine. Chief Anesthesiologist, Department of Anesthesiology, Kitasato Institute Hospital.

2. Instructor.

3. Chief Anesthesiologist, Department of Anesthesiology, Kitasato Institute Hospital.

4. Professor, Department of Anesthesiology, Keio University School of Medicine.

5. Assistant Professor, Department of Physiology, Teikyo University School of Medicine. Current position: Professor, Department of Physiology, Faculty of Health Sciences, Uekusa Gakuen University, Chiba, Japan.

Abstract

Background Sevoflurane-induced respiratory depression has been reported to be due to the action on medullary respiratory and phrenic motor neurons. These results were obtained from extracellular recordings of the neurons. Here, the authors made intracellular recordings of respiratory neurons and analyzed their membrane properties during sevoflurane application. Furthermore, they clarified the role of gamma-aminobutyric acid type A receptors in sevoflurane-induced respiratory depression. Methods In the isolated brainstem-spinal cord of newborn rat, the authors recorded the C4 nerve burst as an index of inspiratory activity. The preparation was superfused with a solution containing sevoflurane alone or sevoflurane plus the gamma-aminobutyric acid type A receptor antagonist picrotoxin or bicuculline. Neuronal activities were also recorded using patch clamp techniques. Results Sevoflurane decreased C4 burst rate and amplitude. Separate perfusion of sevoflurane to the medulla and to the spinal cord decreased C4 burst rate and amplitude, respectively. Both picrotoxin and bicuculline attenuated the reduction of C4 burst rate. Sevoflurane reduced both intraburst firing frequency and membrane resistance of respiratory neurons except for inspiratory neurons. Conclusion Under the influence of sevoflurane, the region containing inspiratory neurons, i.e., the pre-Bötzinger complex, may determine the inspiratory rhythm, because reduced C4 bursts were still synchronized with the bursts of inspiratory neurons within the pre-Bötzinger complex. In contrast, the sevoflurane-induced decrease in C4 burst amplitude is mediated through the inhibition of phrenic motor neurons. gamma-Aminobutyric acid type A receptors may be involved in the sevoflurane-induced respiratory depression within the medulla, but not within the spinal cord.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3