Affiliation:
1. Associate Professor, Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University, Shanghai, China, and Associate Professor, Department of Anesthesiology, PLA455 Hospital, Shanghai, China.
2. Attending Doctor.
3. Associate Professor.
4. Professor, Department of Anesthesiology, Changzheng Hospital, The Second Military Medical University.
Abstract
Background
Studies have demonstrated the role of circulating endothelial progenitor cells (EPCs) in maintaining normal endothelial function and in endothelial repairing. This study was aimed to observe the protective effects of autologous transplantation of circulating EPCs against endotoxin-induced acute lung injury in rabbits and to investigate the underlying mechanisms.
Methods
One-hundred-and-fifty rabbits were enrolled. After acute lung injury was induced by endotoxin, autologous circulating EPCs, endothelial cell, or normal saline were transfused intravenously, respectively. Pao(2)/FiO(2) ratios, concentrations of plasma nitric oxide, malonyldialdehyde, and activity of superoxide dismutase were examined. The lung wet-to-dry weight ratios were counted; polymorphonuclear cell ratios and areas of hyaline membrane formation and hemorrhage were measured. The levels of interleukin-1β, E-selectin, intercellular adhesion molecule-1, interleukin-10, vascular endothelial growth factor protein, and inducible nitric oxide synthase protein were analyzed.
Results
Pao(2)/FiO(2) ratios were significantly increased with EPC transfusion. Infiltration of polymorphonuclear cells, lung wet-to-dry weight ratios, and area of hyaline membrane and hemorrhage in lung tissue were significantly decreased after EPC transplantation. Plasma level of nitric oxide and malondialdehyde were significantly inhibited, and the activity of superoxide dismutase was enhanced in the EPC-treated animals. EPC transplantation significantly increased level of interleukin-10 and vascular endothelial growth factor protein and reduced levels of interleukin-1β, E-selectin, intercellular adhesion molecule-1, and inducible nitric oxide synthase in injury lung tissues.
Conclusions
Autologous transplantation of circulating EPCs can partly restore the pulmonary endothelial function and effectively attenuate endotoxin-induced acute lung injury by direct endothelial repair and indirect immunomodulation of antioxidation and antiinflammation.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献