Buprenorphine Disrupts Sleep and Decreases Adenosine Concentrations in Sleep-regulating Brain Regions of Sprague Dawley Rat

Author:

Gauthier Elizabeth A.1,Guzick Sarah E.2,Brummett Chad M.3,Baghdoyan Helen A.4,Lydic Ralph4

Affiliation:

1. Medical Student.

2. Graduate Student.

3. Assistant Professor.

4. Professor, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan.

Abstract

Background Buprenorphine, a partial μ-opioid receptor agonist and κ-opioid receptor antagonist, is an effective analgesic. The effects of buprenorphine on sleep have not been well characterized. This study tested the hypothesis that an antinociceptive dose of buprenorphine decreases sleep and decreases adenosine concentrations in regions of the basal forebrain and pontine brainstem that regulate sleep. Methods Male Sprague Dawley rats were implanted with intravenous catheters and electrodes for recording states of wakefulness and sleep. Buprenorphine (1 mg/kg) was administered systemically via an indwelling catheter and sleep-wake states were recorded for 24 h. In additional rats, buprenorphine was delivered by microdialysis to the pontine reticular formation and substantia innominata of the basal forebrain while adenosine was simultaneously measured. Results An antinociceptive dose of buprenorphine caused a significant increase in wakefulness (25.2%) and a decrease in nonrapid eye movement sleep (-22.1%) and rapid eye movement sleep (-3.1%). Buprenorphine also increased electroencephalographic delta power during nonrapid eye movement sleep. Coadministration of the sedative-hypnotic eszopiclone diminished the buprenorphine-induced decrease in sleep. Dialysis delivery of buprenorphine significantly decreased adenosine concentrations in the pontine reticular formation (-14.6%) and substantia innominata (-36.7%). Intravenous administration of buprenorphine significantly decreased (-20%) adenosine in the substantia innominata. Conclusions Buprenorphine significantly increased time spent awake, decreased nonrapid eye movement sleep, and increased latency to sleep onset. These disruptions in sleep architecture were mitigated by coadministration of the nonbenzodiazepine sedative-hypnotic eszopiclone. The buprenorphine-induced decrease in adenosine concentrations in basal forebrain and pontine reticular formation is consistent with the interpretation that decreasing adenosine in sleep-regulating brain regions is one mechanism by which opioids disrupt sleep.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference66 articles.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3