Differential Expression of Na/K-ATPase in the Human Saccule of Patients With and Without Otologic Disease

Author:

Avillion Michael P.1,Lopez Ivan A.2,Matsui Hirooki3,Ishiyama Gail4,Ishiyama Akira5

Affiliation:

1. House Ear Clinic

2. Associate Director of the NIDCD National Temporal Bone Laboratory at UCLA DGSOM at UCLA Los Angeles

3. Clinical Research Fellow, DGSOM at UCLA Los Angeles

4. Department of Neurology, DGSOM at UCLA Los Angeles CA

5. NIDCD National Temporal Bone Laboratory at UCLA DGSOM at UCLA Los Angeles, Los Angeles, California

Abstract

Hypothesis Na+, K+-ATPase (Na/K-ATPase) α1 subunit expression in the saccule of patients diagnosed with otologic disease is different compared with normal controls. Background We have recently characterized changes in the expression of Na/K-ATPase α1 subunit in the normal and pathological cochlea; however, no studies have determined the distribution Na/K-ATPase α1 subunit in the human saccule. The present study uses archival temporal bones to study the expression Na/K-ATPase α1 subunit in the human saccule. Methods Archival celloidin formalin fixed 20-micron thick sections of the vestibule from patients diagnosed with Menière's disease (n = 5), otosclerosis (n = 5), sensorineural hearing loss, and normal hearing and balance (n = 5) were analyzed. Sections containing the saccular macula were immunoreacted with mouse monoclonal antibodies against Na/K-ATPase α1 subunit. Micrographs were acquired using a high-resolution digital camera coupled to a light inverted microscope. Results In the normal human saccule vestibular sensory epithelium, Na/K-ATPase α1 immunoreactivity (IR) was present in nerve fibers and calyces that surround type I vestibular hair cells and nerve terminals. The transition epithelium cells were also Na/K-ATPase α1 immunoreactive. Comparison between normal and pathological specimens showed that there was a significant reduction of Na/K-ATPase α1 IR in the saccule vestibular sensory epithelium from patients with Menière’s disease, otosclerosis, and sensorineural hearing loss. Conclusions The decrease of Na/K-ATPase-IR α1 in the saccule vestibular sensory epithelium from patients with otopathologies suggests its critical role in inner ear homeostasis and pathology.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Sensory Systems,Otorhinolaryngology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3