In Vivo Thickness of the Healthy Tympanic Membrane Determined by Optical Coherence Tomography

Author:

Morgenstern Joseph1,Kreusch Theodor1,Golde Jonas,Steuer Svea2,Ossmann Steffen1,Kirsten Lars,Walther Julia3,Zahnert Thomas1,Koch Edmund2,Neudert Marcus1

Affiliation:

1. Department of Otorhinolaryngology, Head and Neck Surgery, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany

2. Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany

3. Department of Medical Physics and Biomedical Engineering, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Fetscherstraße 74, 01307 Dresden, Germany

Abstract

Objective Tympanic membrane (TM) thickness is an important parameter for differentiation between a healthy and a pathologic TM. Furthermore, it is needed for modeling the middle ear function. Endoscopic optical coherence tomography (eOCT) provides the opportunity to measure the TM thickness of the entire TM in vivo. Materials and methods A total of 27 healthy ears were examined by eOCT. The system uses a light source with a central wavelength of 1,300 nm. The endoscope with an outer diameter of 3.5 mm provides a field of view of 10 mm and a working distance of 10 mm. Thickness measurements were carried out at 8 points on the TM. Additionally, the existing literature was analyzed, and a mean TM thickness value was determined. Results The mean thickness of the TM over all measurement points of the pars tensa was 120.2 μm, and the pars flaccida was significantly thicker with a mean thickness of 177.9 μm. Beyond that, there were no significant differences between the single quadrants. The mean TM thickness in the literature was 88.8 μm. Discussion EOCT provides the possibility for in vivo thickness determination of the TM. The mean thickness seems to be higher than in the previous studies, which were mostly carried out ex vivo. Our study takes the three-dimensional refraction into account and provides a method for the refraction correction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3