Using natural language processing to link patients' narratives to visual capabilities and sentiments

Author:

He Dongcheng,Chung Susana T. L.1

Affiliation:

1. Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, California

Abstract

SIGNIFICANCE Analyzing narratives in patients' medical records using a framework that combines natural language processing (NLP) and machine learning may help uncover the underlying patterns of patients' visual capabilities and challenges that they are facing and could be useful in analyzing big data in optometric research. PURPOSE The primary goal of this study was to demonstrate the feasibility of applying a framework that combines NLP and machine learning to analyze narratives in patients' medical records. To test and validate our framework, we applied it to analyze records of low vision patients and to address two questions: Was there association between patients' narratives related to activities of daily living and the quality of their vision? Was there association between patients' narratives related to activities of daily living and their sentiments toward certain “assistive items”? METHODS Our dataset consisted of 616 records of low vision patients. From patients' complaint history, we selected multiple keywords that were related to common activities of daily living. Sentences related to each keyword were converted to numerical data using NLP techniques. Machine learning was then applied to classify the narratives related to each keyword into two categories, labeled based on different “factors of interest” (acuity, contrast sensitivity, and sentiments of patients toward certain “assistive items”). RESULTS Using our proposed framework, when patients' narratives related to specific keywords were used as input, our model effectively predicted the categories of different factors of interest with promising performance. For example, we found strong associations between patients' narratives and their acuity or contrast sensitivity for certain activities of daily living (e.g., “drive” in association with acuity and contrast sensitivity). CONCLUSIONS Despite our limited dataset, our results show that the proposed framework was able to extract the semantic patterns stored in medical narratives and to predict patients' sentiments and quality of vision.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in vision impairment research;Optometry and Vision Science;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3