Does Iso-mechanical Power Lead to Iso-lung Damage?

Author:

Vassalli Francesco1,Pasticci Iacopo1,Romitti Federica1,Duscio Eleonora1,Aßmann David Jerome1,Grünhagen Hannah1,Vasques Francesco1,Bonifazi Matteo1,Busana Mattia1,Macrì Matteo Maria1,Giosa Lorenzo1,Reupke Verena1,Herrmann Peter1,Hahn Günter1,Leopardi Orazio1,Moerer Onnen1,Quintel Michael1,Marini John J.1,Gattinoni Luciano1

Affiliation:

1. From the Department of Anaesthesiology, Emergency and Intensive Care Medicine (F. Vassalli, I.P., F.R., E.D., D.J.A., H.G., M. Bonifazi, M. Busana, M.M.M., L.G., P.H., G.H., O.M., M.Q., L.G.), and Department of Experimental Animal Medicine (V.R.), University of Göttingen, Göttingen, Germany; Department of Adult Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, Health Centre for Human and

Abstract

Abstract Background Excessive tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP) are all potential causes of ventilator-induced lung injury, and all contribute to a single variable: the mechanical power. The authors aimed to determine whether high tidal volume or high respiratory rate or high PEEP at iso-mechanical power produce similar or different ventilator-induced lung injury. Methods Three ventilatory strategies—high tidal volume (twice baseline functional residual capacity), high respiratory rate (40 bpm), and high PEEP (25 cm H2O)—were each applied at two levels of mechanical power (15 and 30 J/min) for 48 h in six groups of seven healthy female piglets (weight: 24.2 ± 2.0 kg, mean ± SD). Results At iso-mechanical power, the high tidal volume groups immediately and sharply increased plateau, driving pressure, stress, and strain, which all further deteriorated with time. In high respiratory rate groups, they changed minimally at the beginning, but steadily increased during the 48 h. In contrast, after a sudden huge increase, they decreased with time in the high PEEP groups. End-experiment specific lung elastance was 6.5 ± 1.7 cm H2O in high tidal volume groups, 10.1 ± 3.9 cm H2O in high respiratory rate groups, and 4.5 ± 0.9 cm H2O in high PEEP groups. Functional residual capacity decreased and extravascular lung water increased similarly in these three categories. Lung weight, wet-to-dry ratio, and histologic scores were similar, regardless of ventilatory strategies and power levels. However, the alveolar edema score was higher in the low power groups. High PEEP had the greatest impact on hemodynamics, leading to increased need for fluids. Adverse events (early mortality and pneumothorax) also occurred more frequently in the high PEEP groups. Conclusions Different ventilatory strategies, delivered at iso-power, led to similar anatomical lung injury. The different systemic consequences of high PEEP underline that ventilator-induced lung injury must be evaluated in the context of the whole body. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference31 articles.

1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.;N Engl J Med,2000

2. Acute lung injury from mechanical ventilation at moderately high airway pressures.;J Appl Physiol (1985),1990

3. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study.;Am Rev Respir Dis,1987

4. Lung stress and strain during mechanical ventilation: Any safe threshold?;Am J Respir Crit Care Med,2011

5. Driving pressure and survival in the acute respiratory distress syndrome.;N Engl J Med,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3