Intubation Biomechanics

Author:

Hindman Bradley J.1,Santoni Brandon G.1,Puttlitz Christian M.1,From Robert P.1,Todd Michael M.1

Affiliation:

1. From the Department of Anesthesia, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa (B.J.H., R.P.F., M.M.T.); Foundation for Orthopaedic Research and Education, Tampa, Florida (B.G.S.); and Department of Mechanical Engineering, School of Biomedical Engineering, Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado (C.

Abstract

Abstract Introduction: Laryngoscopy and endotracheal intubation in the presence of cervical spine instability may put patients at risk of cervical cord injury. Nevertheless, the biomechanics of intubation (cervical spine motion as a function of applied force) have not been characterized. This study characterized and compared the relationship between laryngoscope force and cervical spine motion using two laryngoscopes hypothesized to differ in force. Methods: Fourteen adults undergoing elective surgery were intubated twice (Macintosh, Airtraq). During each intubation, laryngoscope force, cervical spine motion, and glottic view were recorded. Force and motion were referenced to a preintubation baseline (stage 1) and were characterized at three stages: stage 2 (laryngoscope introduction); stage 3 (best glottic view); and stage 4 (endotracheal tube in trachea). Results: Maximal force and motion occurred at stage 3 and differed between the Macintosh and Airtraq: (1) force: 48.8 ± 15.8 versus 10.4 ± 2.8 N, respectively, P = 0.0001; (2) occiput-C5 extension: 29.5 ± 8.5 versus 19.1 ± 8.7 degrees, respectively, P = 0.0023. Between stages 2 and 3, the motion/force ratio differed between Macintosh and Airtraq: 0.5 ± 0.2 versus 2.0 ± 1.4 degrees/N, respectively; P = 0.0006. Discussion: The relationship between laryngoscope force and cervical spine motion is: (1) nonlinear and (2) differs between laryngoscopes. Differences between laryngoscopes in motion/force relationships are likely due to: (1) laryngoscope-specific cervical extension needed for intubation, (2) laryngoscope-specific airway displacement/deformation needed for intubation, and (3) cervical spine and airway tissue viscoelastic properties. Cervical spine motion during endotracheal intubation is not directly proportional to force. Low-force laryngoscopes cannot be assumed to result in proportionally low cervical spine motion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference34 articles.

1. Airway management in adults after cervical spine trauma.;Anesthesiology,2006

2. Potential cervical spine injury and difficult airway management for emergency intubation of trauma adults in the emergency department—A systematic review.;Emerg Med J,2006

3. Emergency tracheal intubation immediately following traumatic injury: An Eastern Association for the Surgery of Trauma practice management guideline.;J Trauma Acute Care Surg,2012

4. Force and torque vary between laryngoscopists and laryngoscope blades.;Anesth Analg,1996

5. Cervical spine movement during laryngoscopy using the Airway Scope compared with the Macintosh laryngoscope.;Anaesthesia,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3