Shift of µ-opioid Receptor Signaling in the Dorsal Reticular Nucleus Is Implicated in Morphine-induced Hyperalgesia in Male Rats

Author:

Costa Ana Rita,Sousa Marília,Wilson Steven P.,Reguenga Carlos,Teixeira-Pinto Armando,Tavares Isaura,Martins Isabel

Abstract

Background Increased descending pain facilitation accounts for opioid-induced hyperalgesia, but the underlying mechanisms remain elusive. Given the role of µ-opioid receptors in opioid-induced hyperalgesia in animals, the authors hypothesized that the dorsal reticular nucleus, a medullary pain facilitatory area, is involved in opioid-induced hyperalgesia through altered µ-opioid receptor signaling. Methods The authors used male Wistar rats (n = 5 to 8 per group), chronically infused with morphine, to evaluate in the dorsal reticular nucleus the expressions of the µ-opioid receptor and phosphorylated cAMP response element-binding, a downstream marker of excitatory µ-opioid receptor signaling. The authors used pharmacologic and gene-mediated approaches. Nociceptive behaviors were evaluated by the von Frey and hot-plates tests. Results Lidocaine fully reversed mechanical and thermal hypersensitivity induced by chronic morphine. Morphine-infusion increased µ-opioid receptor, without concomitant messenger RNA changes, and phosphorylated cAMP response element-binding levels at the dorsal reticular nucleus. µ-opioid receptor knockdown in morphine-infused animals attenuated the decrease of mechanical thresholds and heat-evoked withdrawal latencies compared with the control vector (von Frey [mean ± SD]: −17 ± 8% vs. −40 ± 9.0%; P < 0.001; hot-plate: −10 ± 5% vs. −32 ± 10%; P = 0.001). µ-opioid receptor knockdown in control animals induced the opposite (von Frey: −31 ± 8% vs. −17 ± 8%; P = 0.053; hotplate: −24 ± 6% vs. −3 ± 10%; P = 0.001). The µ-opioid receptor agonist (D-ALA2,N-ME-PHE4,GLY5-OL)-enkephalin acetate (DAMGO) decreased mechanical thresholds and did not affect heat-evoked withdrawal latencies in morphine-infused animals. In control animals, DAMGO increased both mechanical thresholds and heat-evoked withdrawal latencies. Ultra-low-dose naloxone, which prevents the excitatory signaling of the µ-opioid receptor, administered alone, attenuated mechanical and thermal hypersensitivities, and coadministered with DAMGO, restored DAMGO analgesic effects and decreased phosphorylated cAMP response element-binding levels. Conclusions Chronic morphine shifted µ-opioid receptor signaling from inhibitory to excitatory at the dorsal reticular nucleus, likely enhancing descending facilitation during opioid-induced hyperalgesia in the rat. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3