Desflurane Anesthesia Alters Cortical Layer–specific Hierarchical Interactions in Rat Cerebral Cortex

Author:

Hudetz Anthony G.1,Pillay Siveshigan1,Wang Shiyong1,Lee Heonsoo1

Affiliation:

1. From the Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan.

Abstract

Abstract Background Neurocognitive investigations suggest that conscious sensory perception depends on recurrent neuronal interactions among sensory, parietal, and frontal cortical regions, which are suppressed by general anesthetics. The purpose of this work was to investigate if local interactions in sensory cortex are also altered by anesthetics. The authors hypothesized that desflurane would reduce recurrent neuronal interactions in cortical layer–specific manner consistent with the anatomical disposition of feedforward and feedback pathways. Methods Single-unit neuronal activity was measured in freely moving adult male rats (268 units; 10 animals) using microelectrode arrays chronically implanted in primary and secondary visual cortex. Layer-specific directional interactions were estimated by mutual information and transfer entropy of multineuron spike patterns within and between cortical layers three and five. The effect of incrementally increasing and decreasing steady-state concentrations of desflurane (0 to 8% to 0%) was tested for statistically significant quadratic trend across the successive anesthetic states. Results Desflurane produced robust, state-dependent reduction (P = 0.001) of neuronal interactions between primary and secondary visual areas and between layers three and five, as indicated by mutual information (37 and 41% decrease at 8% desflurane from wakeful baseline at [mean ± SD] 0.52 ± 0.51 and 0.53 ± 0.51 a.u., respectively) and transfer entropy (77 and 78% decrease at 8% desflurane from wakeful baseline at 1.86 ± 1.56 a.u. and 1.87 ± 1.67 a.u., respectively). In addition, a preferential suppression of feedback between secondary and primary visual cortex was suggested by the reduction of directional index of transfer entropy overall (P = 0.001; 89% decrease at 8% desflurane from 0.11 ± 0.18 a.u. at baseline) and specifically, in layer five (P = 0.001; 108% decrease at 8% desflurane from 0.12 ± 0.19 a.u. at baseline). Conclusions Desflurane anesthesia reduces neuronal interactions in visual cortex with a preferential effect on feedback. The findings suggest that neuronal disconnection occurs locally, among hierarchical sensory regions, which may contribute to global functional disconnection underlying anesthetic-induced unconsciousness. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference43 articles.

1. Invariant reversible QEEG effects of anesthetics.;Conscious Cogn,2001

2. Consciousness and anesthesia.;Science,2008

3. Neural correlates of consciousness during general anesthesia using functional magnetic resonance imaging (fMRI).;Arch Ital Biol,2012

4. Escape from oblivion: Neural mechanisms of emergence from general anesthesia.;Anesth Analg,2019

5. Understanding the effects of general anesthetics on cortical network activity using ex vivo preparations.;Anesthesiology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3