End-tidal to Arterial Gradients and Alveolar Deadspace for Anesthetic Agents

Author:

Peyton Philip J.,Hendrickx Jan,Grouls Rene J. E.,Van Zundert Andre,De Wolf Andre

Abstract

Background According to the “three-compartment” model of ventilation-perfusion () inequality, increased scatter in the lung under general anesthesia is reflected in increased alveolar deadspace fraction (Vda/Va) customarily measured using end-tidal to arterial (a-a) partial pressure gradients for carbon dioxide. a-a gradients for anesthetic agents such as isoflurane are also significant but have been shown to be inconsistent with those for carbon dioxide under the three-compartment theory. The authors hypothesized that three-compartment Vda/Va calculated using partial pressures of four inhalational agents (Vda/Vag) is different from that calculated using carbon dioxide (Vda/Vaco2) measurements, but similar to predictions from multicompartment models of physiologically realistic “log-normal” distributions. Methods In an observational study, inspired, end-tidal, arterial, and mixed venous partial pressures of halothane, isoflurane, sevoflurane, or desflurane were measured simultaneously with carbon dioxide in 52 cardiac surgery patients at two centers. Vda/Va was calculated from three-compartment model theory and compared for all gases. Ideal alveolar (Pag) and end-capillary partial pressure (Pc’g) of each agent, theoretically identical, were also calculated from end-tidal and arterial partial pressures adjusted for deadspace and venous admixture. Results Calculated Vda/Vag was larger (mean ± SD) for halothane (0.47 ± 0.08), isoflurane (0.55 ± 0.09), sevoflurane (0.61 ± 0.10), and desflurane (0.65 ± 0.07) than Vda/Vaco2 (0.23 ± 0.07 overall), increasing with lower blood solubility (slope [Cis], –0.096 [–0.133 to –0.059], P < 0.001). There was a significant difference between calculated ideal Pag and Pc’g median [interquartile range], Pag 5.1 [3.7, 8.9] versus Pc’g 4.0[2.5, 6.2], P = 0.011, for all agents combined. The slope of the relationship to solubility was predicted by the log-normal lung model, but with a lower magnitude relative to calculated Vda/Vag. Conclusions Alveolar deadspace for anesthetic agents is much larger than for carbon dioxide and related to blood solubility. Unlike the three-compartment model, multicompartment scatter models explain this from physiologically realistic gas uptake distributions, but suggest a residual factor other than solubility, potentially diffusion limitation, contributes to deadspace. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3