Higher Levels of Spontaneous Breathing Induce Lung Recruitment and Reduce Global Stress/Strain in Experimental Lung Injury

Author:

Güldner Andreas1,Braune Anja1,Carvalho Nadja1,Beda Alessandro1,Zeidler Stefan1,Wiedemann Bärbel1,Wunderlich Gerd1,Andreeff Michael1,Uhlig Christopher1,Spieth Peter M.1,Koch Thea1,Pelosi Paolo1,Kotzerke Jörg1,de Abreu Marcelo Gama1

Affiliation:

1. From the Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany (A.G., A.B., N.C., A.B., S.Z., C.U., P.M.S., T.K., and M.G.d.A.); Department of Electric Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (A.B.); Institute of Informatics and Biometry, Dre

Abstract

Abstract Background: Spontaneous breathing (SB) in the early phase of the acute respiratory distress syndrome is controversial. Biphasic positive airway pressure/airway pressure release ventilation (BIPAP/APRV) is commonly used, but the level of SB necessary to maximize potential beneficial effects is unknown. Methods: Experimental acute respiratory distress syndrome was induced by saline lung lavage in anesthetized and mechanically ventilated pigs (n = 12). By using a Latin square and crossover design, animals were ventilated with BIPAP/APRV at four different levels of SB in total minute ventilation (60 min each): (1) 0% (BIPAP/APRV0%); (2) greater than 0 to 30% (BIPAP/APRV>0–30%); (3) greater than 30 to 60% (BIPAP/APRV>30–60%); and (4) greater than 60% (BIPAP/APRV>60%). Gas exchange, hemodynamics, and respiratory variables were measured. Lung aeration was assessed by high-resolution computed tomography. The distribution of perfusion was marked with 68Ga-labeled microspheres and evaluated by positron emission tomography. Results: The authors found that higher levels of SB during BIPAP/APRV (1) improved oxygenation; (2) decreased mean transpulmonary pressure (stress) despite increased inspiratory effort; (3) reduced nonaerated lung tissue, with minimal changes in the distribution of perfusion, resulting in decreased low aeration/perfusion zones; and (4) decreased global strain (mean ± SD) (BIPAP/APRV0%: 1.39 ± 0.08; BIPAP/APRV0–30%: 1.33 ± 0.03; BIPAP/APRV30–60%: 1.27 ± 0.06; BIPAP/APRV>60%: 1.25 ± 0.04, P < 0.05 all vs. BIPAP/APRV0%, and BIPAP/APRV>60%vs. BIPAP/APRV0–30%). Conclusions: In a saline lung lavage model of experimental acute respiratory distress syndrome in pigs, levels of SB during BIPAP/APRV higher than currently recommended for clinical practice, that is, 10 to 30%, improve oxygenation by increasing aeration in dependent lung zones without relevant redistribution of perfusion. In presence of lung recruitment, higher levels of SB reduce global stress and strain despite an increase in inspiratory effort.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3