Possible Pathogenic Mechanism of Propofol Infusion Syndrome Involves Coenzyme Q

Author:

Vanlander Arnaud Vincent1,Okun Juergen Guenther1,de Jaeger Annick1,Smet Joél1,De Latter Elien1,De Paepe Boel1,Dacremont Georges1,Wuyts Birgitte1,Vanheel Bert1,De Paepe Peter1,Jorens Philippe Germaine1,Van Regenmortel Niels1,Van Coster Rudy1

Affiliation:

1. From the Department of Pediatrics, Division of Pediatric Neurology and Metabolism (A.V.V., J.S., E.D.L., B.D.P., R.V.C.), Department of Critical Care Medicine, Division of Pediatric Intensive Care Medicine (A.d.J.), Department of Clinical Chemistry (B.W.), Department of Emergency Medicine (P.D.P.), Ghent University Hospital, Ghent, Belgium; Department of General Pediatrics, Division of Inherited

Abstract

Abstract Background: Propofol is a short-acting intravenous anesthetic agent. In rare conditions, a life-threatening complication known as propofol infusion syndrome can occur. The pathophysiologic mechanism is still unknown. Some studies suggested that propofol acts as uncoupling agent, others suggested that it inhibits complex I or complex IV, or causes increased oxidation of cytochrome c and cytochrome aa3, or inhibits mitochondrial fatty acid metabolism. Although the exact site of interaction is not known, most hypotheses point to the direction of the mitochondria. Methods: Eight rats were ventilated and sedated with propofol up to 20 h. Sequential biopsy specimens were taken from liver and skeletal muscle and used for determination of respiratory chain activities and propofol concentration. Activities were also measured in skeletal muscle from a patient who died of propofol infusion syndrome. Results: In rats, authors detected a decrease in complex II+III activity starting at low tissue concentration of propofol (20 to 25 µM), further declining at higher concentrations. Before starting anesthesia, the complex II+III/citrate synthase activity ratio in liver was 0.46 (0.25) and in skeletal muscle 0.23 (0.05) (mean [SD]). After 20 h of anesthesia, the ratios declined to 0.17 (0.03) and 0.12 (0.02), respectively. When measured individually, the activities of complexes II and III remained normal. Skeletal muscle from one patient taken in the acute phase of propofol infusion syndrome also shows a selective decrease in complex II+III activity (z-score: −2.96). Conclusion: Propofol impedes the electron flow through the respiratory chain and coenzyme Q is the main site of interaction with propofol.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

1. The recent development of propofol (DIPRIVAN).;Intensive Care Med,2000

2. Adverse effects of propofol (Diprivan). Propofol (Diprivan) bivirkninger.;Ugeskr Laeger,1990

3. Propofol infusion syndrome in children.;Paediatr Anaesth,1998

4. Uncoupling effect of the general anesthetic 2,6-diisopropylphenol in isolated rat liver mitochondria.;Arch Biochem Biophys,1991

5. Sevoflurane and propofol depolarize mitochondria in rat and human cerebrocortical synaptosomes by different mechanisms.;Acta Anaesthesiol Scand,2009

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3