Lung Metabolic Activation as an Early Biomarker of Acute Respiratory Distress Syndrome and Local Gene Expression Heterogeneity

Author:

Wellman Tyler J.1,de Prost Nicolas1,Tucci Mauro1,Winkler Tilo1,Baron Rebecca M.1,Filipczak Piotr1,Raby Benjamin1,Chu Jen-hwa1,Harris R. Scott1,Musch Guido1,dos Reis Falcao Luiz F.1,Capelozzi Vera1,Venegas Jose G.1,Vidal Melo Marcos F.1

Affiliation:

1. From the Departments of Anesthesia, Critical Care and Pain Medicine (T.J.W., M.T., T.W., G.M., L.F.d.R.F., J.G.V., M.F.V.M.) and Medicine (Pulmonary and Critical Care; R.S.H.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Medical Intensive Care Unit, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France (N.d.P.); Department of Medicine (P

Abstract

Abstract Background Acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. The authors aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS and to assess gene expression in differentially activated regions. Methods The authors produced ARDS in sheep with intravenous lipopolysaccharide (10 ng ⋅ kg−1 ⋅ h−1) and mechanical ventilation for 20 h. Using positron emission tomography, the authors assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-d-glucose, perfusion and ventilation with 13NN-saline, and aeration using transmission scans. Species-specific microarray technology was used to assess regional gene expression. Results Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histologic injury, suggesting its predictive value for severity of disease progression. Local time courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than nondependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. Conclusions Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference53 articles.

1. Incidence and outcomes of acute lung injury.;N Engl J Med,2005

2. Acute respiratory distress syndrome: The Berlin definition.;JAMA,2012

3. Acute respiratory distress in adults.;Lancet,1967

4. Epithelial and endothelial damage induced by mechanical ventilation modes.;Curr Opin Crit Care,2014

5. Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep.;Crit Care Med,2014

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3