Classification of Current Procedural Terminology Codes from Electronic Health Record Data Using Machine Learning

Author:

Burns Michael L.1,Mathis Michael R.1,Vandervest John1,Tan Xinyu1,Lu Bo1,Colquhoun Douglas A.1,Shah Nirav1,Kheterpal Sachin1,Saager Leif1

Affiliation:

1. From the Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan (M.L.B., M.R.M., J.V., X.T., B.L., D.A.C., N.S., S.K., L.S.); Department of Anaesthesiology, University Medical Center Goettingen, Goettingen, Germany (L.S.).

Abstract

Abstract Background Accurate anesthesiology procedure code data are essential to quality improvement, research, and reimbursement tasks within anesthesiology practices. Advanced data science techniques, including machine learning and natural language processing, offer opportunities to develop classification tools for Current Procedural Terminology codes across anesthesia procedures. Methods Models were created using a Train/Test dataset including 1,164,343 procedures from 16 academic and private hospitals. Five supervised machine learning models were created to classify anesthesiology Current Procedural Terminology codes, with accuracy defined as first choice classification matching the institutional-assigned code existing in the perioperative database. The two best performing models were further refined and tested on a Holdout dataset from a single institution distinct from Train/Test. A tunable confidence parameter was created to identify cases for which models were highly accurate, with the goal of at least 95% accuracy, above the reported 2018 Centers for Medicare and Medicaid Services (Baltimore, Maryland) fee-for-service accuracy. Actual submitted claim data from billing specialists were used as a reference standard. Results Support vector machine and neural network label-embedding attentive models were the best performing models, respectively, demonstrating overall accuracies of 87.9% and 84.2% (single best code), and 96.8% and 94.0% (within top three). Classification accuracy was 96.4% in 47.0% of cases using support vector machine and 94.4% in 62.2% of cases using label-embedding attentive model within the Train/Test dataset. In the Holdout dataset, respective classification accuracies were 93.1% in 58.0% of cases and 95.0% among 62.0%. The most important feature in model training was procedure text. Conclusions Through application of machine learning and natural language processing techniques, highly accurate real-time models were created for anesthesiology Current Procedural Terminology code classification. The increased processing speed and a priori targeted accuracy of this classification approach may provide performance optimization and cost reduction for quality improvement, research, and reimbursement tasks reliant on anesthesiology procedure codes. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3