Breakdown of Neural Function under Isoflurane Anesthesia

Author:

Awal Mehraj R.1,Austin Doug1,Florman Jeremy1,Alkema Mark1,Gabel Christopher V.1,Connor Christopher W.1

Affiliation:

1. From the Department of Physiology and Biophysics (M.R.A., D.A., C.V.G., C.W.C.) and Department of Pharmacology and Experimental Therapeutics, Photonics Center (C.V.G.), Boston University School of Medicine, Boston, Massachusetts; Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts (J.F., M.A.); and Department of Anesthesiology, Perioperative and Pain M

Abstract

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Previous work on the action of volatile anesthetics has focused at either the molecular level or bulk neuronal measurement such as electroencephalography or functional magnetic resonance imaging. There is a distinct gulf in resolution at the level of cellular signaling within neuronal systems. The authors hypothesize that anesthesia is caused by induced dyssynchrony in cellular signaling rather than suppression of individual neuron activity. Methods Employing confocal microscopy and Caenorhabditis elegans expressing the calcium-sensitive fluorophore GCaMP6s in specific command neurons, the authors measure neuronal activity noninvasively and in parallel within the behavioral circuit controlling forward and reverse crawling. The authors compare neuronal dynamics and coordination in a total of 31 animals under atmospheres of 0, 4, and 8% isoflurane. Results When not anesthetized, the interneurons controlling forward or reverse crawling occupy two possible states, with the activity of the “reversal” neurons AVA, AVD, AVE, and RIM strongly intercorrelated, and the “forward” neuron AVB anticorrelated. With exposure to 4% isoflurane and onset of physical quiescence, neuron activity wanders rapidly and erratically through indeterminate states. Neuron dynamics shift toward higher frequencies, and neuron pair correlations within the system are reduced. At 8% isoflurane, physical quiescence continues as neuronal signals show diminished amplitude with little correlation between neurons. Neuronal activity was further studied using statistical tools from information theory to quantify the type of disruption caused by isoflurane. Neuronal signals become noisier and more disordered, as measured by an increase in the randomness of their activity (Shannon entropy). The coordination of the system, measured by whether information exhibited in one neuron is also exhibited in other neurons (multiinformation), decreases significantly at 4% isoflurane (P = 0.00015) and 8% isoflurane (P = 0.0028). Conclusions The onset of anesthesia corresponds with high-frequency randomization of individual neuron activity coupled with induced dyssynchrony and loss of coordination between neurons that disrupts functional signaling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3