circ_0006528 promotes nonsmall cell lung cancer progression by sponging miR-892a and regulating NRAS expression

Author:

Guo Weixi1,Liu Hongming1,Zhong Ming1,Qi Qinghua1,Li Yibin2

Affiliation:

1. Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University and

2. Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China

Abstract

Micro-RNAs play essential roles in developing and progressing nonsmall cell lung cancer (NSCLC) and drug resistance. Nevertheless, the functions and mechanisms are partly explored. Therefore, the present study analyzes the effect of circ_0006528 and the mechanism of regulation of NSCLC cell progression by sponging miR-892a to regulate neuroblastoma rat sarcoma viral oncogene (NRAS) expression. Initially, circ_0006528 is identified using divergent primers-based PCR and RNase R exonuclease treatments. After administration of the designed circ_0006528-specific siRNA, the RT-qPCR analysis is used to determine the interference efficiency of siRNA. At the same time, cell growth, invasion, and migration are assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT), Transwell, and scratch assays in the NSCLC cell lines (secretory pathway Ca2+-ATPase isoform 1 [SPCA-1] and A549) in vitro, respectively. Further, miR-892a inhibitor is added to the cells for functional recovery assay. Finally, the xenograft mouse model is constructed to explore the effect of circ_0006528 on tumor growth in vivo. The RT-qPCR analysis in 66 pairs of NSCLC cancer and noncancerous tissues revealed that circ_0006528 is highly expressed in NSCLC patient tissues. The RNase R experiments revealed that HSA_circ_0006528 is unaffected by RNase R exonuclease. MTT assay showed that knockdown of hsa_circ_0006528 by siRNA significantly decreased cell proliferation and viability in A549 and SPCA-1 cells. The luciferase reporter assay showed direct binding of hsa_circ_0006528 to miR-892a, and miR-892a targets binding NRAS. In addition, the miR-892a inhibitor terminated the hsa_circ_0006528 siRNA, triggering inhibition of proliferation, invasion, and migration of NSCLC cells. In summary, the study revealed that the knockout of hsa_circ_0006528 downregulation of NRAS expression by sponging miR-892a inhibited NSCLC cell growth and invasion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cancer Research,Pharmacology (medical),Pharmacology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3