Chronic exposure to fine particles (PM2.5) and mortality: Evidence from Chile

Author:

Busch Pablo1ORCID,Cifuentes Luis Abdón1ORCID,Cabrera Camila1

Affiliation:

1. Pontificia Universidad Católica de Chile, Santiago, Chile

Abstract

Background: Many Chilean cities suffer from high air pollution from industrial, mobile, and residential wood-burning sources. Several studies have linked PM2.5 air pollution exposure to higher mortality risk from cardiovascular, pulmonary, and lung cancer causes. In recent years, Chile has developed an extensive air pollution monitoring network to enforce air quality standards for PM2.5, allowing the study of the medium-term association between PM2.5 and mortality. Methods: A negative binomial regression model was used to study the association between 3-year average PM2.5 concentrations and age-adjusted mortality rates for 105 of the 345 municipalities in Chile. Models were fitted for all (ICD10 A to Q codes), cardiopulmonary (I and J), cardiovascular (I), pulmonary (J), cancer (C), and lung cancer (C33-C34) causes; controlling for meteorological, socioeconomic, and demographic characteristics. Results: A significant association of PM2.5 exposure with cardiopulmonary (relative risk for 10 µg/m3 PM2.5: 1.06; 95% confidence interval = 1.00, 1.13) and pulmonary (1.11; 1.02, 1.20) age-adjusted mortality rates was found. Cardiovascular (1.06; 0.99, 1.13) and all causes (1.02; 0.98, 1.07) were positive, but not significant. No significant association was found between cancer and lung cancer. The positive associations remained even when controlling for multiple confounding factors, model specifications, and when considering different methods for exposure characterization. These estimates are in line with results from cohort studies from the United States and European studies. Conclusion: Three-year average PM2.5 exposure is positively associated with the age-adjusted mortality rate for cardiopulmonary and cardiovascular causes in Chile. This provides evidence of the medium-term exposure effect of fine particles on long-term mortality rates.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Global and Planetary Change,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3