Nomogram predicting survival in patients with lymph node-negative hepatocellular carcinoma based on the SEER database and external validation

Author:

Li Ziqiang1,Hong Qingyong1,Li Kun1

Affiliation:

1. Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Medicine Research Center for Minimally Invasive Diagnosis and Treatment of Hepatobiliary and Pancreatic Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China

Abstract

Background The relationship between lymph node (LN) status and survival outcome in hepatocellular carcinoma (HCC) is a highly controversial topic. The aim of this study was to investigate the prognostic factors in patients without LN metastasis (LNM) and to construct a nomogram to predict cancer-specific survival (CSS) in this group of patients. Methods We screened 6840 eligible HCC patients in the Surveillance, Epidemiology and End Results(SEER)database between 2010 and 2019 and randomized them into a training cohort and an internal validation cohort, and recruited 160 patients from Zhongnan Hospital of Wuhan University as an external validation cohort. Independent prognostic factors obtained from univariate and multivariate analysis were used to construct a nomogram prediction model. The concordance index (C-index), area under curve (AUC), calibration plots and decision curve analysis (DCA) were used to assess the predictive power and clinical application of the model. Results Univariate and multivariate analysis revealed age, gender, bone metastasis, lung metastasis, AFP, T stage, surgery and chemotherapy as independent prognostic factors. The C-index of the constructed nomogram for the training cohort, internal validation cohort and external validation cohort are 0.746, 0.740, and 0.777, respectively. In the training cohort, the AUC at 1-, 3-, and 5-year were 0.81, 0.800, and 0.800, respectively. Calibration curves showed great agreement between the actual observations and predictions for the three cohorts. The DCA results suggest that the nomogram model has more clinical application potential. Conclusion We constructed a nomogram to predict CSS in HCC patients without LNM. The model has been internally and externally validated to have excellent predictive performance and can help clinicians determine prognosis and make treatment decisions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3