CD44 Deficiency in Mice Protects the Heart Against Angiotensin Ii-Induced Cardiac Fibrosis

Author:

Yang Li-Wang1,Qin Dong-Ze2,James Erskine3,McKallip Robert J.4,Wang Ning-Ping4,Zhang Wei-Wei1,Zheng Rong-Hua1,Han Qing-Hua2,Zhao Zhi-Qing14

Affiliation:

1. Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China

2. Department of Cardiology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China

3. Department of Internal Medicine, Navicent Health, Macon, Georgia

4. Division of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia

Abstract

ABSTRACT This study tested the hypothesis that CD44 is involved in the development of cardiac fibrosis via angiotensin II (Ang II) AT1 receptor-stimulated TNFα/NFκB/IκB signaling pathways. Study was conducted in C57BL/6 wild type and CD44 knockout mice subjected to Ang II infusion (1,000 ng/kg/min) using osmotic minipumps up to 4 weeks or with gastric gavage administration of the AT1 receptor blocker, telmisartan at a dose of 10 mg/kg/d. Results indicated that Ang II enhances expression of the AT1 receptor, TNFα, NFκB, and CD44 as well as downregulates IκB. Further analyses revealed that Ang II increases macrophage migration, augments myofibroblast proliferation, and induces vascular/interstitial fibrosis. Relative to the Ang II group, treatment with telmisartan significantly reduced expression of the AT1 receptor and TNFα. These changes occurred in coincidence with decreased NFκB, increased IκB, and downregulated CD44 in the intracardiac vessels and intermyocardium. Furthermore, macrophage migration and myofibroblast proliferation were inhibited and fibrosis was attenuated. Knockout of CD44 did not affect Ang II-stimulated AT1 receptor and modulated TNFα/NFκB/IκB signaling, but significantly reduced macrophage/myofibroblast-mediated fibrosis as identified by less extensive collagen-rich area. These results suggest that the AT1 receptor is involved in the development of cardiac fibrosis by stimulating TNFα/NFκB/IκB-triggered CD44 signaling pathways. Knockout of CD44 blocked Ang II-induced cell migration/proliferation and cardiac fibrosis. Therefore, selective inhibition of CD44 may be considered as a potential therapeutic target for attenuating Ang II-induced deleterious cardiovascular effects.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3