Affiliation:
1. Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
Abstract
ABSTRACT
Sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by widespread pulmonary inflammation and immune response, in which proinflammatory polarization of alveolar macrophages (AMs) plays an important role. Mitochondria are the key intracellular signaling platforms regulating immune cell responses. Moreover, accumulating evidence suggests that the mitochondrial dynamics of macrophages are imbalanced in sepsis and severe ALI/ARDS. However, the functional significance of mitochondrial dynamics of AMs in septic ALI/ARDS remains largely unknown, and whether it regulates the polarized phenotype of AMs is also unclear. Here, we demonstrated that the mitochondrial dynamics of AMs are imbalanced, manifested by impaired mitochondrial fusion, increased fission and mitochondrial cristae remodeling, both in septic models and ARDS patients. However, suppressing excessive mitochondrial fission with Mdivi-1 or promoting mitochondrial fusion with PM1 to maintain mitochondrial dynamic equilibrium in AMs could inhibit the polarization of AMs into proinflammatory phenotype and attenuate sepsis-induced ALI. These data suggest that mitochondrial dynamic imbalance mediates altered polarization of AMs and exacerbates sepsis-induced ALI. This study provides new insights into the underlying mechanisms of sepsis-induced ALI, suggesting the possibility of identifying future drug targets from the perspective of mitochondrial dynamics in AMs.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Critical Care and Intensive Care Medicine,Emergency Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献