Geniposide improves CLP-induced sepsis model prognosis by upregulating PPARγ to modulate monocyte phenotype and cytokine network

Author:

Zhang Dewen,He Jian1,Ding Xian1,Wang Rui1,Chen Wei

Affiliation:

1. Department of Emergency and Critical Care Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China

Abstract

Abstract Background We explored the efficacy and main biological mechanism of geniposide intervention in sepsis. Methods A sepsis model was established in male BALB/c mice through cecal ligation and puncture (CLP). Different doses of geniposide (20 or 40 mg/kg) were administered intravenously at 0 and/or 24 h after CLP surgery. The survival rate of different groups was observed. Additionally, the expression levels of CD16 and MHC-II in monocytes were assessed using flow cytometry. The concentration of TNF-α, IL-1β, IL-6, and IL-10 in the serum were measured by ELISA. We also observed the biological effects of geniposide on CD16 and MHC-II expression levels in RAW264.7 cells, as well as the secretion of TNF-α, IL-1β, IL-6, and IL-10, in the LPS-induced RAW264.7 cell model. The PPARγ levels were determined using western blot analysis. Results Intravenous administration of 40 mg/kg of geniposide at 0 h after CLP significantly improved the survival outcomes in the septic mouse model, with no significant benefits from low dosing (20 mg/kg) or delayed administration (24 h). The effective dose of geniposide significantly decreased the serum cytokine TNF-α, IL-1β, IL-6, and IL-10 concentrations in septic mice (P < 0.05). Notably, in vitro assays showed that geniposide specifically increased the IL-10 level. Geniposide significantly reduced the CD16 expression (P < 0.05) and increased MHC-II expression in monocytes (P < 0.05). Additionally, geniposide elevated the PPARγ level in monocytes (P < 0.05). Conclusions High-dose early-stage geniposide administration significantly improved the survival rate in a CLP mouse sepsis model by modulating the monocyte phenotype and regulating the cytokine network (IL-6/IL-10 levels). The pharmacological mechanism of geniposide action might be exerted primarily through PPARγ upregulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3