Impact of high-dose vasopressor during endotoxic shock on the cerebral, lingual, hepatic, and renal microcirculation evaluated by near-infrared spectroscopy in swine

Author:

Kurita Tadayoshi,Kawashima Shingo,Khaleelullah Mohamed Mathar Sahib Ibrahim,Nakajima Yoshiki

Abstract

Abstract Background High-dose vasopressors maintain blood pressure during septic shock but may adversely reduce microcirculation in vital organs. We assessed the effect of high-dose norepinephrine and vasopressin on the microcirculation of the brain, tongue, liver, and kidney during endotoxic shock using near-infrared spectroscopy (NIRS). Methods Thirteen pigs (24.5 ± 1.8 kg) were anesthetized, and an NIRS probe was attached directly to each organ. Approximately 0.2, 0.5, 1, and 2 μg/kg/min of norepinephrine were administered in a stepwise manner, followed by 0.5, 1, 2, and 5 μg/kg/min of sodium nitroprusside in normal condition. Moreover, 1 μg/kg/h of lipopolysaccharide was administered continuously after 100 μg bolus to create endotoxic shock, and after 1000 mL of crystalloid infusion, high-dose norepinephrine (2, 5, 10, and 20 μg/kg/min) and vasopressin (0.6, 1.5, 3, and 6 U/min) were administered in a stepwise manner. The relationship between the mean arterial pressure (MAP) and each tissue oxygenation index (TOI) during vasopressor infusion was evaluated. Results Three pigs died after receiving lipopolysaccharides, and 10 were analyzed. An increase of >20% from the baseline MAP induced by high-dose norepinephrine during endotoxic shock reduced the TOI in all organs except the liver. The elevation of MAP to baseline with vasopressin alone increased the kidney and liver TOIs and decreased the tongue TOI. Conclusions Forced blood pressure elevation with high-dose norepinephrine during endotoxic shock decreased the microcirculation of vital organs, especially the kidney. Cerebral TOI may be useful for identifying the upper limit of blood pressure, at which norepinephrine impairs microcirculation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3