CIRC_0091822 CONTRIBUTES TO THE PROLIFERATION, INVASION, AND MIGRATION OF VASCULAR SMOOTH MUSCLE CELLS UNDER OXIDIZED LOW-DENSITY LIPOPROTEIN TREATMENT

Author:

Sun Hu1,Huang Xiaoyuan2,Hong Shichai3

Affiliation:

1. Department of Vascular Surgery, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, China

2. Department of Stomatology, Zhongshan Hospital, Xiamen University, Xiamen, China

3. Department of Vascular Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China

Abstract

ABSTRACT Background: Circular RNAs (circRNAs) have been shown to mediate atherosclerosis (AS) process by regulating vascular smooth muscle cells (VSMCs) function. However, whether circ_0091822 mediates VSMCs function to regulate AS process is unclear. Methods: Oxidized low-density lipoprotein (ox-LDL) was used to treat VSMCs for constructing AS cell models. Vascular smooth muscle cells proliferation, invasion, and migration were examined by cell counting kit 8 assay, EdU assay, transwell assay, and wound healing assay. Protein expression was tested by western blot analysis. The expression of circ_0091822, microRNA (miR)-339-5p, and blocking of proliferation 1 (BOP1) was determined using quantitative real-time PCR. RNA interaction was examined using dual-luciferase reporter assay and RIP assay. Results: Ox-LDL treatment enhanced VSMCs proliferation, invasion, and migration. Circ_0091822 was overexpressed in the serum of AS patients and ox-LDL–induced VSMCs. Circ_0091822 knockdown inhibited ox-LDL–induced VSMCs proliferation, invasion, and migration. Circ_0091822 sponged miR-339-5p, and miR-339-5p inhibitor reversed the function of circ_0091822 knockdown. MiR-339-5p targeted BOP1, and BOP1 also reversed the repressing effect of miR-339-5p on ox-LDL–induced VSMCs functions. Circ_0091822/miR-339-5p/BOP1 axis promoted the activity of Wnt/β-catenin pathway. Conclusions: Circ_0091822 might be a therapeutic target for AS, which facilitated ox-LDL–induced VSMCs proliferation, invasion, and migration through modulating miR-339-5p/BOP1/Wnt/β-catenin pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3