The role of N6-methyladenosine methyltransferase RBM15 in non-alcoholic fatty liver disease

Author:

Li Shiqing,Lian Shengyi1,Cheng Wei2,Zhang Tao3,Gong Xiaobing

Affiliation:

1. Department of General Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China

2. Teaching and Research Section of Pathophysiology, North Sichuan Medical College, Nanchong, China

3. Department of Gastroenterology, the Second Clinical College of North Sichuan Medical College-Nanchong City Central Hospital (Beijing Anzhen Hospital, Nanchong Hospital), Nanchong, China

Abstract

Abstract Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder with significant health implications. N6-methyladenosine (m6A) methyltransferase is known to exert regulatory functions in liver-related diseases. This study investigates the intricate role of RNA binding motif protein 15 (RBM15) in modulating inflammation and oxidative stress in NAFLD. An NAFLD model was induced in mice (Male, C57BL/6 J, 72 mice in the sham group) through a high-fat diet for 9 weeks, and hepatocytes were exposed to long chain-free fatty acids. The expression levels of RBM15, ring finger protein 5 (RNF5), and rho-kinase 1 (ROCK1) were assessed. RBM15 expression was intervened (injection of AAV9 virus at week 9 and detection at week 11). Liver damage was evaluated using staining assays, along with assessments of weight changes and lipid levels. Notably, RBM15 (decreased about 40%/60%) and RNF5 (decreased about 60%/75%) were poorly expressed while ROCK1 (increased about 2.5-fold) was highly expressed in liver tissues and cells NAFLD. RBM15 overexpression mitigated liver damage, inflammation, and oxidative stress in NAFLD mice, resulting in reduced liver-to-body weight ratio (20%) and decreased levels of alanine aminotransferase (54%), aspartate aminotransferase (36%), total cholesterol (30%), and triglycerides (30%), and inhibited inflammation and oxidative stress level. Mechanistically, RBM15 up-regulated RNF5 expression through m6A methylation modification, and RNF5 suppressed ROCK1 protein levels through ubiquitination modification. RNF5 knockdown or ROCK1 overexpression accelerated inflammation and oxidative stress in NAFLD. Taken together, RBM15 upregulated RNF5 expression through m6A methylation modification. RNF5 inhibited ROCK1 expression through ubiquitination modification to mitigate NAFLD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3