TRAUMATIC BRAIN INJURY–INDUCED INFLAMMATION AND GASTROINTESTINAL MOTILITY DYSFUNCTION

Author:

Cannon Abigail R.,Anderson Lillian J.,Galicia Kevin,Murray Mary Grace,Kamran Aadil S.,Li Xiaoling,Gonzalez Richard P.,Choudhry Mashkoor A.

Abstract

ABSTRACT Background: Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in the United States, with an annual cost of 60 billion dollars. There is evidence suggesting that in the post-TBI period, the gastrointestinal tract plays a central role in driving organ and immune dysfunction and may be the source of increased circulating proinflammatory mediators. In this study, we examined systemic inflammation and bacterial dysbiosis in patients who sustained a TBI with or without polytrauma. Using a mouse model of TBI, we further show how neuroinflammation after TBI is potentially linked to disruptions in gut homeostasis such as intestinal transit and inflammation. Methods: During a study of trauma patients performed from September 1, 2018, to September 1, 2019, at a single, level 1 trauma center, TBI patients aged 21 to 95 years were enrolled. Patients were categorized as TBI based on evidence of acute abnormal findings on head computed tomographic scan, which was a combination of isolated TBI and TBI with polytrauma. Blood and stool samples were collected between 24 h and 3 days after admission. Twelve plasma samples and 10 fecal samples were used for this study. Healthy control samples were obtained from a healthy control biobank. We examined systemic inflammation and bacterial changes in patients who sustained a TBI. In addition, TBI was induced in 9- to 10-week-old male mice; we assessed neuroinflammation, and intestine transit (motility) and bacterial changes 24 h after TBI. Results: When compared with healthy controls, TBI patients had increased systemic inflammation as evidenced by increased levels of IFN-γ and MCP-1 and a trend toward an increase of IL-6 and IL-8 (P = 0.0551 and P = 0.0549), respectively. The anti-inflammatory cytokine, IL-4, was also decreased in TBI patients. Although there was a trend of an increase in copy number of Enterobacteriaceae and a decrease in copy number of Lactobacillus in both patients and mice after TBI, these trends were not found to be significantly different. However, TBI significantly increased the copy number of another potential pathogenic bacteria Bilophila wadsworthia in TBI patients compared with healthy controls. After a moderate TBI, mice had increased expression of TNF-α, IL-6 and IL-1β, CXCL1, s100a9, and Ly6G and decreased IL-10 in the brain lesion after TBI. This accompanied decreased transit and increased TNF-α in the small intestine of mice after TBI. Conclusions: Our findings suggest that TBI increases systemic inflammation, intestinal dysfunction, and neuroinflammation. More studies are needed to confirm whether changes in intestinal motility play a role in post-TBI neuroinflammation and cognitive deficit.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3