THE CRITICAL ROLE OF THE HISTONE MODIFICATION ENZYME SETDB2 IN THE PATHOGENESIS OF ACUTE RESPIRATORY DISTRESS SYNDROME

Author:

Sonobe Shota,Kitabatake Masahiro1,Hara Atsushi1,Konda Makiko,Ouji-Sageshima Noriko1,Terada-Ikeda Chiyoko2,Furukawa Ryutaro,Imakita Natsuko,Oda Akihisa3,Takeda Maiko2,Takamura Shiki4,Inoue Satoki5,Kunkel Steven L.6,Kawaguchi Masahiko7,Ito Toshihiro1

Affiliation:

1. Department of Immunology, Nara Medical University, Kashihara, Japan

2. Department of Diagnostic Pathology, Nara Medical University, Kashihara, Japan

3. Department of Pediatrics, Nara Medical University, Kashihara, Japan

4. Laboratory for Immunological Memory, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan

5. Department of Anesthesiology, Fukushima Medical University, Fukushima, Japan

6. Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan

7. Department of Anesthesiology, Nara Medical University, Kashihara, Japan

Abstract

ABSTRACT Introduction: Acute respiratory distress syndrome (ARDS) is a severe hypoxemic respiratory failure with a high in-hospital mortality. However, the molecular mechanisms underlying ARDS remain unclear. Recent findings have indicated that the onset of severe inflammatory diseases, such as sepsis, is regulated by epigenetic changes. We investigated the role of epigenetic changes in ARDS pathogenesis using mouse models and human samples. Methods: Acute respiratory distress syndrome was induced in a mouse model (C57BL/6 mice, myeloid cell or vascular endothelial cell [VEC]–specific SET domain bifurcated 2 [Setdb2]–deficient mice [Setdb2ffLyz2Cre+ or Setdb2ffTie2Cre+], and Cre littermates) by intratracheal administration of lipopolysaccharide (LPS). Analyses were performed at 6 and 72 h after LPS administration. Sera and lung autopsy specimens from ARDS patients were examined. Results: In the murine ARDS model, we observed high expression of the histone modification enzyme SET domain bifurcated 2 (Setdb2) in the lungs. In situ hybridization examination of the lungs revealed Setdb2 expression in macrophages and VECs. The histological score and albumin level of bronchoalveolar lavage fluid were significantly increased in Setdb2ffTie2Cre+ mice following LPS administration compared with Setdb2ffTie2Cre- mice, whereas there was no significant difference between the control and Setdb2ffLyz2Cre+ mice. Apoptosis of VECs was enhanced in Setdb2ffTie2Cre+ mice. Among the 84 apoptosis-related genes, the expression of TNF receptor superfamily member 10b (Tnfrsf10b) was significantly higher in Setdb2ffTie2Cre+ mice than in control mice. Acute respiratory distress syndrome patients' serum showed higher SETDB2 levels than those of healthy volunteers. SETDB2 levels were negatively correlated with the partial pressure of oxygen in arterial blood/fraction of inspiratory oxygen concentration ratio. Conclusion: Acute respiratory distress syndrome elevates Setdb2, apoptosis of VECs, and vascular permeability. Elevation of histone methyltransferase Setdb2 suggests the possibility to histone change and epigenetic modification. Thus, Setdb2 may be a novel therapeutic target for controlling the pathogenesis of ARDS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3