HYDROMORPHONE MITIGATES CARDIOPULMONARY BYPASS-INDUCED ACUTE LUNG INJURY BY REPRESSING PYROPTOSIS OF ALVEOLAR MACROPHAGES

Author:

Zhang Jun,Li Jie,An Zhongzhe,Qi Jun

Abstract

ABSTRACT Introduction: Acute lung injury (ALI) is a devastating pulmonary illness with diffuse inflammatory responses. Hydromorphone (Hyd) is an opioid agonist used for relieving moderate-to-severe pain. The present work investigated the effect of Hyd on cardiopulmonary bypass (CPB)–induced ALI by regulating pyroptosis of alveolar macrophages (AMs). Methods: Rats were subjected to CPB, followed by Hyd treatment. The lung injury in rat lung tissues was appraised by the ratio of lung wet/dry weight (weight), histological staining, and the total protein concentrations in bronchoalveolar lavage fluid, and lung function was assessed by oxygenation index and respiratory index, and lung macrophage pyroptosis was observed by fluorescence staining. Alveolar macrophages were separated and pyroptosis was determined by western blot assay and enzyme-linked immunosorbent assay. The expression patterns of nuclear factor erythroid 2–related factor 2/heme oxygenase 1 (Nrf2/HO-1), nod-like receptor protein 3 (NLRP3), N-terminal gasdermin-D, and cleaved caspase-1 were examined by real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry assays. The impact of NLRP3 or Nrf2 on pyroptosis of AMs and CPB-induced ALI was observed after treatment of nigericin (NLRP3 agonist) or ML385 (Nrf2 inhibitor). Results: Hyd attenuated CPB-induced lung injury as manifested by reductions in lung inflammation and edema, the scores of lung injury, the ratio of lung wet/dry weight, and the total protein concentrations in bronchoalveolar lavage fluid. Besides, Hyd repressed NLRP3 inflammasome-mediated pyroptosis of AMs after CPB treatment. Hyd upregulated Nrf2/HO-1 expression levels to repress NLRP3 inflammasome-mediated pyroptosis. Treatment of nigericin or ML385 counteracted the role of Hyd in ameliorating pyroptosis of AMs and CPB-induced ALI. Conclusions: Hyd alleviated NLRP3 inflammasome-mediated pyroptosis and CPB-induced ALI via upregulating the Nrf2/HO-1 pathway, which may be achieved by AMs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

Reference45 articles.

1. Relevance and recommendations for the application of cardioplegic solutions in cardiopulmonary bypass surgery in pigs;Biomedicines,2021

2. Evaluation of inflammation caused by cardiopulmonary bypass in a small animal model;Biology (Basel),2020

3. Lung injury after cardiopulmonary bypass: alternative treatment prospects;World J Clin Cases,2022

4. Hemolysis and kidney injury in cardiac surgery: the protective role of nitric oxide therapy;Semin Nephrol,2019

5. Acute kidney injury following cardiopulmonary bypass: a challenging picture;Oxid Med Cell Longev,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3