Determination of Maximum Tolerable Cold Ischemia Time in a Mouse Model of Cervical Heterotopic Uterus Transplantation

Author:

Luo Xin1,Yu Shengnan2,Liu Bing1,Zheng Qisheng2,Zhou Xin2,An Ke3,Zhong Jiaying2,Wu Licheng4,Dai Helong5,Qi Zhongquan1,Xia Junjie2

Affiliation:

1. School of Medicine, Guangxi University, Nanning, Guangxi, P. R. China.

2. Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China.

3. Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China.

4. School of Medicine, Xiamen University, Xiamen, Fujian, P. R. China.

5. Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, P. R. China.

Abstract

Background. Uterus transplantation (UTx) is an emerging treatment for uterine factor infertility. Determining the maximum tolerable cold ischemia time is crucial for successful UTx. However, the limit for cold ischemia in the uterus is unclear. This study aimed to examine cold ischemia’s effects on mouse uteri and identify the maximum cold ischemia duration that uteri can endure. Methods. We systematically assessed the tolerance of mouse uteri to extended cold ischemia, 24 h, 36 h, and 48 h, using the cervical heterotopic UTx model. Multiple indicators were used to evaluate ischemia-reperfusion injury, including reperfusion duration, macroscopic examination, oxidative stress, inflammation, and histopathology. The function of transplants was evaluated through estrous cycle monitoring and embryo transfer. Results. Mouse uteri subjected to 48 h of cold ischemia exhibited significant delays and insufficiencies in reperfusion, substantial tissue necrosis, and loss of the estrous cycle. Conversely, uteri that underwent cold ischemia within 36 h showed long survival, regular estrous cycles, and fertility. Conclusions. Our study demonstrated that mouse uteri can endure at least 36 h of cold ischemia, extending the known limits for cold ischemia and providing a pivotal reference for research on the prevention and treatment of cold ischemic injury in UTx.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3