Vagus nerve stimulation rescues persistent pain following orthopedic surgery in adult mice

Author:

Wu Pau Yen1ORCID,Caceres Ana Isabel1,Chen Jiegen1,Sokoloff Jamie1,Huang Mingjian2,Baht Gurpreet Singh2,Nackley Andrea G.13,Jordt Sven-Eric134,Terrando Niccolò156

Affiliation:

1. Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States

2. Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States

3. Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States

4. Integrated Toxicology and Environmental Health Program, Duke University, Durham, United States

5. Department of Cell Biology, Duke University Medical Center, Durham, NC, United States

6. Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, United States

Abstract

Abstract Postoperative pain is a major clinical problem imposing a significant burden on patients and society. In a survey 2 years after orthopedic surgery, 57% of patients reported persisting postoperative pain. However, only limited progress has been made in the development of safe and effective therapies to prevent the onset and chronification of pain after orthopedic surgery. We established a tibial fracture mouse model that recapitulates clinically relevant orthopedic trauma surgery, which causes changes in neuropeptide levels in dorsal root ganglia and sustained neuroinflammation in the spinal cord. Here, we monitored extended pain behavior in this model, observing chronic bilateral hindpaw mechanical allodynia in both male and female C57BL/6J mice that persisted for >3 months after surgery. We also tested the analgesic effects of a novel, minimally invasive, bioelectronic approach to percutaneously stimulate the vagus nerve (termed percutaneous vagus nerve stimulation [pVNS]). Weekly pVNS treatment for 30 minutes at 10 Hz for 3 weeks after the surgery strongly reduced pain behaviors compared with untreated controls. Percutaneous vagus nerve stimulation also improved locomotor coordination and accelerated bone healing. In the dorsal root ganglia, vagal stimulation inhibited the activation of glial fibrillary acidic protein-positive satellite cells but without affecting microglial activation. Overall, these data provide novel evidence supportive of the use of pVNS to prevent postoperative pain and inform translational studies to test antinociceptive effects of bioelectronic medicine in the clinic.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3