Cerebral hemodynamics as biomarkers for neuropathic pain in rats: a longitudinal study using a spinal nerve ligation model

Author:

Jin SeokhaORCID,Cho Hyung JoonORCID

Abstract

Abstract Neuropathic pain is one of the most challenging types of pain to diagnose and treat, a problem exacerbated by the lack of a quantitative biomarker. Recently, several clinical and preclinical studies have shown that neuropathic pain induces cerebral hemodynamic changes as a result of neuroplasticity in the brain. Our hypothesis in this study is that neuropathic pain leads to cerebral hemodynamic changes over postoperative time in a spinal nerve ligation (SNL) rat model, which has not been longitudinally explored previously. Furthermore, by identifying multiple regional hemodynamic features that are the most distinct between SNL and sham groups, where the sham group underwent only an incision without SNL, it may be possible to classify the SNL group regardless of when the onset of pain occurs. We investigate cerebral hemodynamic changes using dynamic susceptibility contrast magnetic resonance imaging in a rat model up to 28 days after ligating L5/L6 spinal nerves. We trained a linear support vector machine with relative cerebral blood volume data from different brain regions and found that the prediction model trained on the nucleus accumbens, motor cortex, pretectal area, and thalamus classified the SNL group and sham group at a 79.27% balanced accuracy, regardless of when the onset of pain occurred (SNL/sham: 60/45 data points). From the use of the SNL model without prior knowledge of the onset time of pain, the current findings highlight the potential of relative cerebral blood volume in the 4 highlighted brain regions as a biomarker for neuropathic pain.

Funder

Ministry of Health and Welfare, Ministry of Science and ICT

National research foundation of korea government

National Research Foundation of the Korean government

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3