RNA isoform expression landscape of the human dorsal root ganglion generated from long-read sequencing

Author:

Arendt-Tranholm Asta,Mwirigi Juliet M.,Price Theodore J.ORCID

Abstract

Abstract Splicing is a posttranscriptional RNA processing mechanism that enhances genomic complexity by creating multiple isoforms from the same gene. We aimed to characterize the isoforms expressed in the human peripheral nervous system, with the goal of creating a resource to identify novel isoforms of functionally relevant genes associated with somatosensation and nociception. We used long-read sequencing to document isoform expression in the human dorsal root ganglia from 3 organ donors and validated in silico by confirming expression in short-read sequencing from 3 independent organ donors. Nineteen thousand five hundred forty-seven isoforms of protein-coding genes were detected and validated. We identified 763 isoforms with at least one previously undescribed splice junction. Previously unannotated isoforms of multiple pain-associated genes, including ASIC3, MRGPRX1, and HNRNPK, were identified. In the novel isoforms of ASIC3, a region comprising approximately 35% of the 5'UTR was excised. By contrast, a novel splice junction was used in isoforms of MRGPRX1 to include an additional exon upstream of the start codon, consequently adding a region to the 5'UTR. Novel isoforms of HNRNPK were identified, which used previously unannotated splice sites to both excise exon 14 and include a sequence in the 3' end of exon 13. This novel insertion is predicted to introduce a tyrosine phosphorylation site potentially phosphorylated by SRC. We also independently confirm a recently reported DRG-specific splicing event in WNK1 that gives insight into how painless peripheral neuropathy occurs when this gene is mutated. Our findings give a clear overview of mRNA isoform diversity in the human dorsal root ganglia obtained using long-read sequencing.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3