Noninvasive targeted modulation of pain circuits with focused ultrasonic waves

Author:

Riis Thomas S.1,Feldman Daniel A.12,Losser Adam J.1,Okifuji Akiko3,Kubanek Jan1ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States

2. Department of Radiology, University of Utah, Salt Lake City, UT, United States

3. Division of Pain Medicine, Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States

Abstract

Abstract Direct interventions into deep brain circuits constitute promising treatment modalities for chronic pain. Cingulotomy and deep brain stimulation targeting the anterior cingulate cortex have shown notable improvements in the unpleasantness of pain, but these interventions require brain surgeries. In this study, we have developed an approach that can modulate this deep brain affective hub entirely noninvasively, using low-intensity transcranial-focused ultrasound. Twenty patients with chronic pain received two 40-minute active or sham stimulation protocols and were monitored for one week in a randomized crossover trial. Sixty percent of subjects experienced a clinically meaningful reduction of pain on day 1 and on day 7 following the active stimulation, while sham stimulation provided such benefits only to 15% and 20% of subjects, respectively. On average, active stimulation reduced pain by 60.0% immediately following the intervention and by 43.0% and 33.0% on days 1 and 7 following the intervention. The corresponding sham levels were 14.4%, 12.3%, and 6.6%. The stimulation was well tolerated, and no adverse events were detected. Side effects were generally mild and resolved within 24 hours. Together, the direct, ultrasonic stimulation of the anterior cingulate cortex offers rapid, clinically meaningful, and durable improvements in pain severity.

Funder

National Institute of Neurological Disorders and Stroke

NIH Blueprint for Neuroscience Research

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3