Radiosurgery-induced Microvascular Alterations Precede Necrosis of the Brain Neuropil

Author:

Kamiryo Toshifumi1,Lopes M. Beatriz S.2,Kassell Neal F.1,Steiner Ladislau1,Lee Kevin S.12

Affiliation:

1. Department of Neurological Surgery University of Virginia, Charlottesville, Virginia

2. Department of Pathology University of Virginia, Charlottesville, Virginia

Abstract

Abstract OBJECTIVE Radiosurgery is used as a therapeutic modality for a wide range of cerebral disorders. It is important to understand the underlying causes of deleterious side effects that may accompany gamma-irradiation of brain tissue. In this study, structural alterations in rat cerebral vessels subjected to gamma knife irradiation in vivo were examined, for elucidation of their potential role in necrosis formation. METHODS A maximal center dose of 75 Gy was delivered to the rat parietal cortex with a 4-mm collimator, and changes occurring before necrosis formation were assessed 3.5 months after irradiation. Transmission electron microscopy, using horseradish peroxidase as a tracer, and scanning electron microscopy with vascular casting were performed. RESULTS The capillary network in the irradiated area exhibited thickening and vacuolation of the basement membrane. The capillary density in the irradiated area was lower and the average capillary diameter was larger, compared with the nonirradiated side. These results indicate that substantial changes in the neuropil do not occur 2 weeks before the time of definite necrosis formation, whereas changes in the basement membrane are prominent. CONCLUSION The necrotic response to intermediate doses of focused-beam irradiation appears after a considerable latency period and then progresses rapidly. This contrasts with previously reported responses to fractionated whole-brain irradiation, in which damage occurs slowly and gradually. Alterations in the microvascular basement membrane precede overt cellular changes in neuronal and vascular cells and provide an early index of cerebrovascular dysfunction in regions destined to undergo necrosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

Reference30 articles.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3