Lung [18F]fluorodeoxyglucose Uptake and Ventilation–Perfusion Mismatch in the Early Stage of Experimental Acute Smoke Inhalation

Author:

Musch Guido1,Winkler Tilo1,Harris R. Scott1,Vidal Melo Marcos F.1,Wellman Tyler J.1,de Prost Nicolas1,Kradin Richard L.1,Venegas Jose G.1

Affiliation:

1. From the Department of Anesthesia, Critical Care, and Pain Medicine (G.M., T.W., M.F.V.M., T.J.W., N.d.P., J.G.V.), Department of Medicine, Pulmonary and Critical Care Unit (R.S.H.), and Department of Pathology (R.L.K.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

Abstract

Abstract Background: Acute lung injury occurs in a third of patients with smoke inhalation injury. Its clinical manifestations usually do not appear until 48–72 h after inhalation. Identifying inflammatory changes that occur in pulmonary parenchyma earlier than that could provide insight into the pathogenesis of smoke-induced acute lung injury. Furthermore, noninvasive measurement of such changes might lead to earlier diagnosis and treatment. Because glucose is the main source of energy for pulmonary inflammatory cells, the authors hypothesized that its pulmonary metabolism is increased shortly after smoke inhalation, when classic manifestations of acute lung injury are not yet expected. Methods: In five sheep, the authors induced unilateral injury with 48 breaths of cotton smoke while the contralateral lung served as control. The authors used positron emission tomography with: (1) [18F]fluorodeoxyglucose to measure metabolic activity of pulmonary inflammatory cells; and (2) [13N]nitrogen in saline to measure shunt and ventilation–perfusion distributions separately in the smoke-exposed and control lungs. Results: The pulmonary [18F]fluorodeoxyglucose uptake rate was increased at 4 h after smoke inhalation (mean ± SD: 0.0031 ± 0.0013 vs. 0.0026 ± 0.0010 min−1; P < 0.05) mainly as a result of increased glucose phosphorylation. At this stage, there was no worsening in lung aeration or shunt. However, there was a shift of perfusion toward units with lower ventilation-to-perfusion ratio (mean ratio ± SD: 0.82 ± 0.10 vs. 1.12 ± 0.02; P < 0.05) and increased heterogeneity of the ventilation–perfusion distribution (mean ± SD: 0.21 ± 0.07 vs. 0.13 ± 0.01; P < 0 .05). Conclusion: Using noninvasive imaging, the authors demonstrated that increased pulmonary [18F]fluorodeoxyglucose uptake and ventilation–perfusion mismatch occur early after smoke inhalation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3