Isoflurane Activates Sarcolemmal Adenosine Triphosphate-sensitive Potassium Channels in Vascular Smooth Muscle Cells

Author:

Tanaka Katsuya1,Kawano Takashi2,Nakamura Akiyo3,Nazari Hossein3,Kawahito Shinji2,Oshita Shuzo4,Takahashi Akira5,Nakaya Yutaka6

Affiliation:

1. Assistant Professor.

2. Instructor.

3. Graduate Student.

4. Professor and Chairman, Department of Anesthesiology, Tokushima University School of Medicine.

5. Associate Professor.

6. Professor and Chairman, Department of Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.

Abstract

Background Recent evidence indicates that vascular adenosine triphosphate-sensitive potassium (K(ATP)) channels in vascular smooth muscle cells are critical in the regulation of vascular tonus under both physiologic and pathophysiologic conditions. Studies of the interaction of volatile anesthetics with vascular K(ATP) channels have been limited. In the current study, the authors investigated the molecular mechanism of isoflurane's action on vascular K(ATP) channels. Methods Electrophysiologic experiments were performed using cell-attached and inside-out patch clamp techniques to monitor native vascular K(ATP) channels, and recombinant K(ATP) channels comprised of inwardly rectifying potassium channel subunits (Kir6.1) and the sulfonylurea receptor (SUR2B). Isometric tension experiments were performed in rat thoracic aortic rings without endothelium. Results Application of isoflurane (0.5 mM) to the bath solution during cell-attached recordings induced a significant increase in K(ATP) channel activity, which was greatly reduced by pretreatment with a selective inhibitor of protein kinase A (PKA), Rp-cAMPS (100 microM). In inside-out patches, isoflurane did not activate K(ATP) channels. Isoflurane significantly activated wild-type recombinant SUR2B/Kir6.1 in cell-attached patches. Isoflurane-induced activation of wild-type channels was diminished in the PKA-insensitive mutant SUR2B-T633A/Kir6.1, SUR2B-S1465A/Kir6.1, and SUR2B/Kir6.1-S385A. In addition, the authors demonstrated that isoflurane-induced PKA activation was associated with isoflurane-induced decreases in isometric tension in the rat aorta. Conclusion These results indicate that isoflurane activates K(ATP) channels via PKA activation. PKA-dependent vasodilation induced by isoflurane also was observed in isometric tension experiments. Analysis of expressed vascular-type K(ATP) channels suggested that PKA-mediated phosphorylation of both Kir6.1 and SUR2B subunits plays a pivotal role in isoflurane-induced vascular K(ATP) channel activation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3