Hydrocortisone Preserves the Vascular Barrier by Protecting the Endothelial Glycocalyx

Author:

Chappell Daniel1,Jacob Matthias1,Hofmann-Kiefer Klaus1,Bruegger Dirk1,Rehm Markus2,Conzen Peter3,Welsch Ulrich4,Becker Bernhard F.5

Affiliation:

1. Staff Anesthesiologist.

2. Assistant Professor of Anesthesiology.

3. Professor of Anesthesiology, Clinic of Anesthesiology.

4. Professor of Anatomy, Institute of Anatomy.

5. Professor of Physiology, Institute of Physiology, Ludwig-Maximilians University Munich.

Abstract

Background Hydrocortisone protects against ischemia-reperfusion injury, reduces paracellular permeability for macromolecules, and is routinely applied in the prevention of interstitial edema. Healthy vascular endothelium is coated by the endothelial glycocalyx, diminution of which increases capillary permeability, suggesting that the glycocalyx is a target for hydrocortisone action. Methods Isolated guinea pig hearts were perfused with Krebs-Henseleit buffer. Hydrocortisone was applied in a stress dose (10 microg/ml) before inducing 20 min of ischemia (37 degrees C). Hearts were reperfused for 20 min at constant flow (baseline perfusion pressure, 70 cm H2O) with Krebs-Henseleit buffer or Krebs-Henseleit buffer plus 2 g% hydroxyethyl starch (130 kd). Coronary net fluid filtration was assessed directly by measuring transudate formation on the epicardial surface. Hearts were perfusion fixed to visualize the glycocalyx. Results Ischemia-induced degradation of the glycocalyx enhanced coronary perfusion pressure (118.8 +/- 17.3 cm H2O) and increased vascular permeability (8 +/- 0.2 microl x min(-1) x cm H2O(-1) at baseline vs. 34 +/- 3.3 microl x min(-1) x cm H2O(-1) after reperfusion). Enzymatic digestion of the glycocalyx (heparinase) elicited similar effects. Hydrocortisone reduced postischemic oxidative stress, perfusion pressure (86.3 +/- 6.4 cm H2O), and transudate formation (11 +/- 0.6 microl x min(-1) x cm H2O(-1)). Applying colloid augmented this (70.6 +/- 5.6 cm H2O and 9 +/- 0.5 microl x min(-1) x cm H2O(-1)). Postischemic shedding of syndecan-1, heparan sulfate, and hyaluronan was inhibited by hydrocortisone, as was release of histamine from resident mast cells. Electron microscopy revealed a mostly intact glycocalyx after hydrocortisone treatment, but not after heparinase treatment. Conclusions Hydrocortisone preserves the endothelial glycocalyx, sustaining the vascular barrier and reducing interstitial edema. The effect of colloids suggests that prevention of postischemic rise in coronary resistance by hydrocortisone could also be based on alleviation of endothelial swelling. Stabilization of myocardial mast cells by hydrocortisone may account for the mitigated inflammatory affect of ischemia-reperfusion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference36 articles.

Cited by 217 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3