Author:
Hughes Alisa K.,Ergonul Zuhal,Stricklett Peter K.,Kohan Donald E.
Abstract
ABSTRACT. Cellular injury in post-diarrheal hemolytic-uremic syndrome (D+HUS) is related to shigatoxin (Stx) binding to globotriaosylceramide (Gb3). High renal Gb3 expression may determine renal susceptibility in D+HUS; however, the molecular mechanism(s) responsible for such relatively abundant Gb3 levels are unknown. Consequently, kidney cells expressing high Gb3 (cultured human proximal tubule cells [HPT]) were compared with non-kidney cells with low Gb3 content (cultured human brain microvascular endothelial cells [HBEC]). HPT were much more sensitive to the cytotoxic and protein synthesis inhibitory effects of Stx-1; this correlated with Gb3 content and 125I-Stx-1 binding. HPT had greater Gb3 synthase (GalT6) and lower α-galactosidase activities than HBEC, whereas lactosylceramide synthase (GalT2) activity was higher in HBEC. Ceramide glucosyltransferase (CGT) activity was similar between the two cell types. The higher HPT GalT6 activity was associated with increased GalT6 mRNA steady-state levels, but no difference in GalT6 mRNA half-life. The lower HPT α-galactosidase activity was associated with reduced α-galactosidase mRNA steady-state levels but no difference in α-galactosidase mRNA half-life. Higher HBEC GalT2 activity was associated with increased steady-state GalT2 mRNA levels. These studies suggest that high renal Gb3 expression is due to enhanced GalT6 gene transcription and reduced α-galactosidase gene transcription and occur despite relatively low GalT2 activity.
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献