Contribution of Polyol Pathway to Diabetes-Induced Oxidative Stress

Author:

Chung Stephen S.M.,Ho Eric C.M.,Lam Karen S.L.,Chung Sookja K.

Abstract

ABSTRACT. Diabetes causes increased oxidative stress, which is thought to play an important role in the pathogenesis of various diabetic complications. However, the source of the hyperglycemia-induced oxidative stress is not clear. It was found that the polyol pathway is the major contributor to oxidative stress in the lenses and nerves of diabetic mice. The first enzyme in the pathway, aldose reductase (AR), reduces glucose to sorbitol, which is then converted to fructose by sorbitol dehydrogenase (SDH). Transgenic mice that overexpress AR specifically in their lenses showed a significant increase in oxidative stress when they became hyperglycemic, as indicated by a decrease in GSH and an increase in malondialdehyde in their lenses. Introducing an SDH-deficient mutation into these transgenic mice significantly normalized the GSH and malondialdehyde levels. These results indicate that both enzymes of the polyol pathway contributed to hyperglycemia-induced oxidative stress in the lens. In the wild-type mice, diabetes caused a significant decrease in GSH in their sciatic nerves, indicative of oxidative stress. In the AR null mutant mice, diabetes did not lead to any decrease in the nerve GSH level. These results indicate that similar to the situation in the lens, AR is also the major contributor to hyperglycemia-induced oxidative stress in the nerve. Although increased flux of glucose through the polyol pathway leads to diabetic lesions in both the lenses and nerve, the mechanisms may be different. AR-induced osmotic stress seems to be the cause of diabetic cataract, whereas AR-induced oxidative stress is probably the cause of neuronal dysfunction. E-mail: smchung@hkucc.hku.hk

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 447 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3