Author:
Pfeilschifter Josef,Eberhardt Wolfgang,Huwiler Andrea
Abstract
ABSTRACT. Regulation of signal transduction and gene expression is a multifaceted process involving ligands, receptors, and second messengers that trigger cascades of protein kinases and phosphatases and propagate the signal to the nucleus to alter gene expression. Reduction-oxidation (redox)-based regulatory pathways provide additional means of gating signal transduction, and redox-based regulation of gene expression emerges as a fundamental regulatory mechanism in living cells. The cellular redox state is reflected by the degree of oxidation (or reduction) of various redox-active molecules at a specific cellular location at any given time point. The ratio of oxidized/reduced redox species determines the redox potential, which may vary dramatically in time and in different compartments of a cell and consequently alter in a temporally and spatially dynamic process the activity of signaling enzymes that carry redox-active functional groups. Generation and action of free radicals such as nitric oxide, superoxide, and H2O2 that paradigmatically highlight the impact of redox regulation on cellular signal transduction and gene expression are discussed with a special focus on the renal glomerular response to injury. E-mail: Pfeilschifter@em.uni-frankfurt.de
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献