Identification and Characterization of Pkhd1, the Mouse Orthologue of the Human ARPKD Gene

Author:

Nagasawa Yasuyuki,Matthiesen Sonja,Onuchic Luiz F.,Hou Xiaoying,Bergmann Carsten,Esquivel Ernie,Senderek Jan,Ren Zhiyong,Zeltner Raoul,Furu Laszlo,Avner Ellis,Moser Markus,Somlo Stefan,Guay-Woodford Lisa,Büttner Reinhard,Zerres Klaus,Germino Gregory G.

Abstract

ABSTRACT. PKHD1, the gene mutated in human autosomal recessive polycystic kidney disease has recently been identified. Its translation products are predicted to belong to a superfamily of proteins involved in the regulation of cellular adhesion and repulsion. One notable aspect of the gene is its unusually complex pattern of splicing. This study shows that mouse Pkhd1 and its translation products have very similar properties to its human orthologue. Mouse Pkhd1 extends over approximately 500 kb of genomic DNA, includes a minimum of 68 nonoverlapping exons, and exhibits a complex pattern of splicing. The longest ORF encodes a protein of 4059aa predicted to have an N-terminal signal peptide, multiple IPTs and PbH1 repeats, a single transmembrane span (TM), and a short cytoplasmic C-terminus. Although the protein sequence is generally well conserved (approximately 73% average identity), the C-termini share only 55% identity. The pattern of Pkhd1 expression by in situ hybridization was also examined in developing and adult mouse tissues over a range of ages (E12.5 to 3 mo postnatal). High levels of expression were present in renal and biliary tubular structures at all time points examined. Prominent Pkhd1 signals were also found in a number of other organs and tissues. Tissue-specific differences in transcript expression were revealed through the use of single exon probes. These data show that key features of human PKHD1 are highly conserved in the mouse and suggest that the complicated pattern of splicing is likely to be functionally important.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3